
  

  

Abstract— This paper presents a novel autonomous drone-

based smoke plume tracking system capable of navigating and 

tracking plumes in highly unsteady atmospheric conditions. 

The system integrates advanced hardware and software, along 

with a comprehensive simulation environment, to ensure 

robust performance in controlled and real-world settings. 

Equipped with a quadrotor platform, high-resolution imaging 

systems, and an advanced onboard computing unit, the drone 

performs precise maneuvers while accurately detecting and 

tracking dynamic smoke plumes under fluctuating conditions. 

Our software implements a two-phase flight operation: 

descending into the smoke plume upon detection and 

continuously monitoring the smoke's movement during in-

plume tracking. Leveraging PID control and a Proximal Policy 

Optimization Deep Reinforcement Learning (DRL) controller 

enables adaptation to plume dynamics. Simulations using 

Unreal Engine evaluate performance under various smoke-

wind scenarios, from steady flow to complex, unsteady 

fluctuations, showing that while the PID controller performs 

adequately in simpler scenarios, the DRL-based controller 

excels in more challenging environments. Field tests 

corroborate these findings. This system opens new 

possibilities for drone-based monitoring in areas like wildfire 

management and air quality assessment. The successful 

integration of DRL for real-time decision-making advances 

autonomous drone control for dynamic environments. 

I. INTRODUCTION 

The atmospheric transport of particulate matter (PM) is an 
interdisciplinary field with profound implications for 
environmental science, climate modeling, and public health 
[1-3]. Examples of such transport include the dispersion of 
smoke plumes from forest fires, the distribution of volcanic 
ash during eruptions, and the movements of sand, dust, or 
snow migration by wind [4-7]. Understanding the dynamics of 
these particles is vital for predicting their environmental and 
health impacts, including effects on climate change, ecosystem 
dynamics, and respiratory health issues. 

These particle transports usually span a wide range of 
scales, from the kilometer-scale movement of flows to the 
micrometer-scale size of particles [8]. Particle morphology 
and composition significantly influence their dispersion, yet 
existing field data and measurement tools are insufficient for 
accurately tracking these properties, which is critical for 
effective modeling [9]. Current techniques such as lidar and 
satellite imaging effectively capture large-scale particle 
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movements but lack the resolution to provide detailed particle 
characteristics [8, 10], whereas in situ PM sensors, which 
estimate particle size distribution based on light scattering or 
aerodynamic properties, often rely on various assumptions, 
leading to uncertainties, especially for irregular particles like 
volcanic ash [11-15]. 

In response to these challenges, Bristow et al. introduced 
an innovative autonomous drone system equipped with a 
Digital inline holography (DIH) sensor for mapping particle 
distribution within a smoke plume [16]. In their approach, the 
drone initially flies above the plume, capturing top-down 
images using a machine vision camera. These images are 
analyzed in real-time using optical flow techniques to extract 
plume flow information, which is then used to guide the 
drone's navigation within the plume. Their system successfully 
navigated through smoke and monitored changes in particle 
properties during controlled experiments. However, a 
significant limitation of their method was its exclusive reliance 
on top-down imaging for flow analysis, lacking intelligent 
navigation once the drone entered the plume. This absence of 
feedback control within the smoke hindered the drone's ability 
to adapt to shifts in wind direction, leading to inconsistent 
tracking in real-world scenarios characterized by rapidly 
changing wind patterns and turbulent environments. 
Therefore, here we aim to overcome these limitations by 
developing an advanced computer vision-based control 
system. This system enables the drone to dynamically adjust 
its trajectory and effectively respond to directional changes in 
the plume caused by shifting wind conditions, thereby 
enhancing its performance in real atmospheric environments. 

To date, there appears to be a paucity of research 
specifically focusing on the use of drones for tracking 
atmospheric particle transport like smoke plume dispersion. 
Relevant studies in this field have primarily concentrated on 
employing drones to track more predictable static or dynamic 
objects such as vehicles, people, or other drones [17, 18]. The 
methods typically include tracking the motion of the target 
object within the camera frame [18-21] or actively following 
the target using the drone. In these scenarios, object detection 
is achieved using traditional image processing [19, 22] or deep 
learning approaches [23-25]. The subsequent tracking 
maneuvers are then executed using non-linear Proportional 
Integral–Derivative (PID) controllers [18] often coupled with 
Kalman filtering [20] to address uncertainties.  

However, these approaches are primarily suited for well-
defined and predictable objects, and they fall short when 
applied to the complex nature of atmospheric flows like 
smoke. Atmospheric particle transport, such as smoke plumes 
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or dust clouds, is fluid and dynamic, differing significantly 
from the more predictable objects typically tracked by drones 
[17, 18], [22]. This fluidity requires algorithms that can adapt 
to continuously changing shapes, densities, and movements. 
Additionally, the environmental conditions where these flows 
occur, such as varying wind speed, direction, and turbulence, 
add complexity that current tracking systems, optimized for 
controlled environments [18, 26] struggle to handle. The 
current detection algorithms used on drones often produce 
bounding boxes that deviate from the actual centroid of the 
dynamic plume, leading to inaccurate tracking. Moreover, 
higher inference times cause delays in drone responses, 
resulting in slow or non-reactive behavior during rapid shifts 
in smoke movement. These challenges underscore the need for 
real-time adaptive tracking solutions capable of managing the 
unpredictability of atmospheric flows. 

Recently, advanced deep reinforcement learning (DRL)-
based drone navigation has been explored to enhance 
adaptability and robustness in dynamic and unpredictable 
environments [27]. These methods include vision and depth-
based localization and navigation, which are primarily applied 
to object avoidance, tracking, and drone racing applications 
[26, 28-30]. Despite the potential of DRL-based techniques, 
there has been no prior research focused specifically on using 
these methods to track and follow atmospheric flows, such as 
smoke plumes. Adapting DRL-based drone navigation to 
atmospheric flow tracking presents unique challenges, 
particularly because existing methods designed for object 
tracking do not adequately address the complexities of 
atmospheric particle transport. 

To address these gaps, our study proposes a novel 
approach to integrating active deep learning, computer vision, 
and advanced control strategies when the drone gets inside the 
smoke plume. This enables the drone to adjust its trajectory 
within the plume, targeting more concentrated areas despite 
dynamic changes in wind conditions. This approach seeks to 
enhance the robustness of autonomous drone systems in 
tracking realistic and constantly deforming atmospheric flows 
in real-time, based on their changing characteristics and the 
surrounding environmental conditions. By integrating real-
time environmental data into tracking, our system seeks to 
achieve a level of adaptability and precision that is currently 
lacking in existing drone-based tracking technologies. 

The structure of this paper is as follows: Section II 
describes the proposed drone system in detail. In Section III 
and IV, we demonstrate the effectiveness of our approach 
through simulation and real-world field deployments. Finally, 
we summarize our findings and discuss their implications. 

II. METHODOLOGY 

A. Overview 

Our autonomous drone-based smoke tracking system 
operates on a quadrotor platform equipped with a machine 
vision camera and an edge computing device for real-time 
processing, supporting tasks such as YOLO-based [31] smoke 
detection and control algorithms using PID/DRL controllers. 
The system operates in two key phases: the descending phase 
and the in-plume tracking phase. In the descending phase, the 
drone begins by positioning itself above the smoke plume, 
using the YOLO-based smoke detection algorithm to identify 
the initial presence of smoke, and then initiates its descent. A 
PID controller governs the drone's trajectory, ensuring stable 

movement towards the smoke plume dispersion region, while 
optical flow aids in aligning the drone with the direction of 
smoke flow. Upon reaching the plume, the system transitions 
into the in-plume tracking phase, triggered by detecting the 
smoke segmentation centroid. During this phase, the camera 
reorients to maintain a continuous view of the smoke, using 
YOLO segmentation to track the smoke's centroid in the 
camera’s field of view. The drone's trajectory is continuously 
adjusted by a combination of a PID controller and a DRL 
controller based on the Proximal Policy Optimization (PPO) 
algorithm, ensuring that the drone remains aligned with the 
smoke centroid even as wind conditions shift and the plume 
changes direction. This allows the drone to continuously track 
and follow the densest regions of the smoke plume under 
dynamic environmental conditions. 

B. Hardware 

The drone hardware consists of a quadrotor body, high-
resolution imaging systems, and an onboard computing unit, 
as illustrated in Figure 2. The system builds on our previous 
design detailed in [16], incorporating upgrades to the imaging 
system and the onboard edge computing device to enhance 
real-time autonomy. Specifically, the core computational unit 
has been upgraded to the Nvidia Jetson Orin Nano, delivering 
up to 40 TOPS—nearly double the performance of the 
previous Jetson Xavier NX. It operates on Linux (Jetpack 
5.1.3, Ubuntu 20.04 LTS, Linux Kernel 5.10) with ROS 
Noetic for efficient communication, boots from an NVMe 
SSD, and utilizes TensorRT to accelerate deep learning 
inference. To handle the high memory demands of DRL tasks, 

Figure 1. Autonomous drone-based smoke tracking system working principle.  

 
Figure 2. Autonomous drone-based smoke tracking system hardware. 



  

an additional 8GB of swap space has been added to the 
existing 8GB of RAM. The flight controller has been upgraded 
to the Pixhawk 6C (from Pixhawk 4), which interfaces with 
the Jetson through MAVROS for MAVLink communication 
and integrates RTK technology with GPS to achieve 
centimeter-level positioning accuracy. To minimize latency 
and maintain high resolution with minimal distortion, the 
machine vision system has been enhanced with a 12-
megapixel ArduCam, replacing the previous GoPro camera. 
Mounted on a 3-axis gimbal for both top-down and in-plume 
views, the camera operates at a reduced sensor size of 640 x 
480 pixels at 30 frames per second, which reduces unnecessary 
computational load and improves response times. Together, 
these upgrades significantly enhance real-time image 
processing and autonomous control, improving the drone’s 
multi-phase and multi-modal smoke tracking capabilities.  

C. Algorithm and Software Architecture 

As depicted in Figure 3, the framework of the autonomous 
drone operation algorithm is divided into two main phases: the 
descending phase and the in-plume tracking phase, each 
comprising several steps. Specifically, the descending phase 
consists of the following steps: 
1) Hovering and Smoke Detection Setup: The drone hovers 
above the smoke plume in forward scan mode, with the state 
set to 'GUIDED' to enable autonomous control commands 
from the Jetson module. The gimbal is pitched downward to 
capture a top-down view. 
2) Smoke Detection: A detection node processes the top-
down images using a custom-trained YOLOv8m model to 
detect the smoke plume, outputting bounding boxes with 
coordinates and dimensions. 
3) Optical Flow Analysis: Once smoke is detected, the drone 
halts all movement, and RAFT Optical Flow [32] analysis 
begins. The optical flow node processes the sequential 
bounding boxes to compute the directional vector of the smoke 
flow until the mean direction is established. 
4) Yaw Alignment and Descent: The drone yaws to align 
with against the smoke flow and initiates its descent. A PID 
controller maintains the smoke bounding box in the upper half 
of the frame, ensuring the descent stays within the smoke 
dispersion area. The descent continues until the drone is fully 
immersed in the smoke. 

Once the drone reaches the target altitude, it switches to the 
in-plume tracking phase, adjusting the gimbal for a forward 
view from within the plume toward the smoke source. The in-
plume tracking phase proceeds using the following steps: 
1) Smoke Segmentation: At this stage, the detection node is 
disabled, and a smoke segmentation node takes over. The node 
uses a YOLOv8m-seg model, trained to identify and segment 
denser regions within the smoke plume. It validates segments 
that exceed a set threshold and calculates the centroid of each 
valid segment by averaging the x and y coordinates, 
representing the densest smoke region. This data, including 
segmentation area, centroid location, and mask, is used as 
inputs for drone trajectory control. 
2) Trajectory Control: The drone’s movement is managed by 
either a PID or DRL controller. The PID controller calculates 
the positional error between the smoke centroid and the center 
of the camera frame, generating velocity commands to adjust 
the drone’s position along the horizontal and vertical axes for 
smooth tracking. In contrast, the DRL controller processes the 

binary smoke segmentation mask through an actor-critic 
policy network, selecting actions from a discrete set to 
maneuver the drone in a manner similar to the PID controller. 
While the PID controller provides faster, more reliable 
responses when well-tuned, the DRL controller excels in 
dynamic or unpredictable environments. Currently, the system 
allows manual switching between these controllers via 
operator commands, but future versions will incorporate 
automatic switching based on real-time smoke conditions to 
optimize performance. Further details on DRL customization 
are discussed in the following section. 

D. DRL Drone Control Algorithm  

Our study employs Proximal Policy Optimization (PPO), a 
widely used DRL algorithm implemented using the Stable 
Baselines3 library and OpenAI Gym environments, to address 
the complex task of smoke tracking. PPO is known for its 
stability, robustness in high-dimensional and stochastic 
environments, making it suitable for the unpredictable nature 
of smoke plume dynamics. It operates using an actor-critic 
framework, a type of policy gradient method, where the actor 
proposes action probabilities, and the critic evaluates their 
expected value. To ensure stable learning, PPO employs a 
clipped objective function that prevents large, destabilizing 
policy updates, crucial for controlling drones in dynamic 
environments. PPO has been widely applied in various drone 

 

Figure 3. The framework of the autonomous drone operation algorithm. 

 



  

control tasks, such as autonomous maneuvering [33], drone 
tracking [34], and path planning [35]. However, adapting this 
approach to the unique challenges of smoke plume tracking 
required several adaptations, as detailed below. 
1) Custom CNN Architecture: The core of our DRL system 
is a custom Convolutional Neural Network (CNN) integrated 
into the PPO framework to handle the unique visual 
environment of smoke plumes. The CNN handles single-
channel binary segmentation masks of size 320 x 320 pixels 
and consists of an input layer for single-channel binary images, 
three convolutional layers with increasing filter depths (32, 64, 
128) using strides to reduce spatial dimensions, ReLU 
activation functions for non-linearity, a flattening layer to 
convert 2D feature maps into a 1D feature vector, and a fully 
connected layer that outputs a fixed-size feature vector to the 
policy and value networks. This architecture is optimized for 
efficient feature extraction and low latency, enabling real-time 
operation on the resource-constrained Jetson platform. 
2) Discrete Action Space: The DRL predicts within a discrete 
action space with seven movement options: no movement, up, 
down, left, right, hard left, and hard right. Each action 
corresponds to predefined velocity adjustments along the 
drone's horizontal and vertical axes, allowing precise 
trajectory control. The range of actions, from subtle 
adjustments (left, right) to more aggressive maneuvers (hard 
left, hard right), offers the flexibility needed to navigate 
effectively inside smoke. 
3) Custom reward function: The custom reward function 
incentivizes the drone to track denser smoke regions by 
rewarding movements that align with the smoke segmentation 
centroid’s position in the image frame. For example, if the 
centroid is on the left and the DRL controller predicts a left 
movement, a positive reward is given. If the centroid is far left, 
a "hard left" action earns a full reward, while a simple "left" 
receives a partial reward. Incorrect or suboptimal movements 
result in negative or reduced rewards. Additionally, the drone 
is rewarded for maintaining its position when the centroid is 
centered, promoting stability during steady plume conditions. 
This reward shaping encourages exploration while reinforcing 
behaviors that lead to successful tracking.  
4) Training Configuration: The PPO-based DRL 
architecture was trained with specific hyperparameters to 
enhance learning efficiency and adaptability. We used a 
learning rate of 3×10−4, a discount factor � �0.99, 2,048 steps 
per update, a batch size of 256, and 10 epochs per update, 
training the model over 1 million timesteps. The smoke 
scenarios in Unreal Engine alternated between steady linear 

flows and fluctuating directions with varying oscillation 
frequencies, providing comprehensive training data that 
mimics real-world smoke conditions. 
5) Inference and Simulation-to-real-world (Sim2Real) 
Transfer: During inference, the trained model applies the 
learned policy to control the drone’s movements in both 
simulated and real-world smoke environments. The 
segmentation model, trained on both real and simulated 
smoke, generates binary smoke masks, which the DRL 
controller processes to predict actions. These actions are then 
mapped directly to drone control commands. Since the 
segmentation model handles the differences between 
simulated and real smoke, the DRL controller functions 
seamlessly, ensuring smooth policy transfer and effective 
navigation across both environments. 

III. SIMULATION ASSESSMENT 

A. Simulation Environment 

Developing an autonomous drone system for smoke plume 
tracking presents several challenges, including the need for 
large, open testing areas, unpredictable drone behavior that can 
lead to costly crashes, and weather conditions like wind and 
rain that limit testing opportunities. To overcome these 
challenges, we developed a simulation environment using 
Unreal Engine 5.1.1 to enable rapid algorithm testing and 
refinement under controlled and realistic smoke-wind 
scenarios before field deployment. The simulation replicates 
real-world conditions at our primary field-testing site, the 
Eolos Field Station in Rosemount, Minnesota, USA. This 
includes simulating terrains, vegetation, and infrastructure to 
create an environment that closely mirrors the actual testing 
site. For smoke generation, we utilize Unreal Engine's Niagara 
Plugin, which includes Niagara Fluids, Chaos Niagara, and the 
Niagara Custom Data Interface, to produce realistic smoke 
dynamics. The simulation environment allows full control 
over wind speed and direction through a custom blueprint in 
the event graph, which calculates time-dependent wind 
vectors. This setup supports both variable and constant wind 
flows, allowing flexibility in test conditions. The drone’s flight 
control and machine vision are simulated using the PX4 
Software-in-the-Loop (SITL) integrated with AirSim and 
running on Windows Subsystem for Linux (WSL2). AirSim 
captures sensor data and camera images, which are published 
to ROS topics for analysis. The WSL2 virtual Linux 
environment emulates Jetson hardware, enabling real-time 
computer vision and deep learning computations. The ROS 
framework in WSL2, combined with MAVROS, ensures 
seamless MAVLink communication with PX4 SITL for 
autonomous drone control within the simulation. This 
integration allows accurate simulation of drone flight and its 
interaction with the smoke plume. Overall, this simulation 
environment provides a robust platform for algorithm testing, 
from drone flight to smoke detection and segmentation, under 
a wide range of realistic smoke-wind scenarios. The flexibility 
and reproducibility of the Unreal Engine smoke simulation 
allow us to thoroughly evaluate the drone's performance in 
diverse test conditions before field deployment. 

B. Performance Assessment using Simulation 

The smoke tracking performance of the drone, using both 
PID and DRL-based control algorithms, was evaluated under 
different smoke generation and wind conditions in the 

 
Figure 4. Simulation of the deployment of autonomous drone-based smoke 
tracking system at Eolos Field Station, Rosemount, Minnesota, USA. 



  

simulation. Four test scenarios, with increasing levels of 
tracking difficulty, were designed to assess the algorithms:  

1) Steady Smoke Flow (S): The smoke plume is steady under 
constant streamwise wind (��� of 4.5 m/s with no fluctuations 

in direction or speed. This represents a stable and predictable 
condition, ideal for baseline performance evaluation. 

2) Unsteady Smoke Flow with Low-Frequency Horizontal 
Fluctuation (UL): The smoke experiences a mild low-
frequency fluctuating crosswind which is superimposed on 
top of the primary wind of �� � 4.5 m/s. The crosswind is 

specified as �
 � 1.35 sin�0.02��� m/s with an amplitude of 
1.35 m/s and a frequency of 0.01 Hz.  

3) Unsteady Smoke Flow with High-Frequency Horizontal 
Fluctuation (UH): The smoke experiences a stronger high-
frequency crosswind superimposed on top of the primary 
wind of �� � 4.5 m/s. The crosswind is specified as �
 �

1.95 sin�0.04��� m/s with an amplitude of 1.95 m/s and 
0.02 Hz frequency. Under such conditions, the smoke changes 
direction more rapidly, increasing the tracking challenge. 

4) Unsteady Smoke Flow with 3D Fluctuation (U3D): Both 
horizontal and vertical wind fluctuations are introduced on 
top of the primary wind of �� � 4.5 m/s to further increase 

the tracking challenges. The horizontal crosswind is specified 
as �
 � 1.95 sin�0.04���  (amplitude 1.95 m/s, frequency 
0.02 Hz), and vertical wind �� � 0.3 sin�0.02��� (amplitude 
0.3 m/s, frequency 0.01 Hz). Under such conditions, the 
plume fluctuates in a complex 3D pattern. 

To accurately assess the drone’s smoke tracking 
performance, we positioned an observer drone equipped with 
a camera at a fixed altitude above the smoke plume, providing 
a top-down view of the tracking drone as shown in Figure 5a. 
As the tracking drone enters the smoke plume, visual methods 
like bounding boxes become ineffective. Instead, we mapped 
the tracker drone’s 3D GPS coordinates to 2D-pixel 
coordinates within the observer drone’s camera image. By 
using the observer drone’s GPS location, camera focal length, 
and applying the haversine formula, we computed the image's 
dimensions in the world frame and used an affine 
transformation matrix to map each pixel to GPS coordinates. 
The inverse transformation allowed us to accurately track the 
drone's location in the camera image without relying solely on 
image-based techniques. 

As shown in Figure 5b, custom metrics are introduced to 
compare PID and DRL controllers based on the tracking 
drone’s position relative to the smoke plume contour to 
evaluate how close the drone stays within the plume center 
during the entire tracking duration. The plume contour is 
generated through thresholding and extracting the largest 
contour, with the red circle representing the drone’s location 
and the green spline depicting the smoke plume's mean line 
(skeleton). In total the following five metrics are used for 
performance evaluation including normalized average 

distance of the drone from the mean line ��� � ����� �� !
"#$% , normalized maximum distance of the drone from the 

mean line  &�,�(
 � � �� ! "#$%, normalized average 

distance when outside the smoke plume ��) � ����� )� !
"#$% , normalized maximum distance when outside the 

smoke plume  &),�(
 � � )�  ! "#$%, percentage of time 

inside the smoke plume �̃8, where "#$%  is the total smoke 

tracking length,   � is the drone's distance from the smoke 
mean line, and  ) is the distance from the smoke contour. 

Table 1 summarizes the performance metrics for both PID 
and DRL controllers under the different test conditions. In 
steady smoke flow (S), both PID and DRL controllers 
perform similarly, effectively tracking the plume with 
comparable ��� and �̃8 , indicating that both controllers can 
track the steady smoke plume effectively. Under low-
frequency, low-amplitude unsteadiness (UL), the DRL 
controller shows a marked improvement in tracking the mean 
line of the plume. The ��� drops significantly from 4.0% 
(PID) to 1.8% (DRL), highlighting its ability to maintain 
closer alignment with the plume. The variability remains 
comparable, indicating that DRL’s performance gain is not 
due to increased instability but rather improved trajectory 
correction. In higher-frequency unsteady flow (UH) with 
stronger crosswinds, the DRL outperforms PID across all 

metrics, notably improving in  &),�(
, where the DRL 

controller reduces the deviation to 12.3%, compared to 18.6% 
for PID and significantly extending the �̃8 achieving 85% 
compared to 69% for PID. Finally, under 3D unsteadiness 
(U3D), the DRL controller exhibits significant improvements 
across all metrics showing a much closer alignment with the 
smoke, with ��� significantly reduced compared to PID, and 
it achieves a greater �̃8. The DRL controller demonstrates 
superior adaptability in this highly dynamic and complex 
smoke environment, maintaining better overall performance. 

 ����%�  &�,�(
�%� ��)�%�  &),�(
�%� �̃8 �%� 

S
 PID 1.6:0.2 7.5:2.1 1.4:0.6 2.9:0.7 95.1:2.5 

DRL 1.4:0.2 7.0:2.3 1.8:1.2 4.0:3.3 94.1:1.4 

U
L

 PID 4.0:0.4 11.9:2.2 2.5:1.3 6.6:3.1 87.1:2.2 

DRL 1.8:0.5 10.1:2.3 2.5:1.1 8.4:3.3 86.9:1.8 

U
H

 PID 7.2:1.5 28.1:10.9 5.3:3.8 18.6:7.4 69.4:4.7 

DRL 5.4:1.1 26.0:8.4 4.6:3.1 12.3:6.5 85.0:6.4 

U
3

D
 PID 4.1:0.6 15.5:6.5 4.5:2.6 12.8:5.9 79.5:2.3 

DRL 1.9:0.5 10.6:4.4 1.5:2.1 4.3:4.3 95.0:4.1 

Table 1. Performance Metrics evaluated using the simulation and mean and 
standard deviation are calculated based on five tests under each condition for 
both PID and DRL control separately.  

IV. FIELD DEMONSTRATION 

Field testing was conducted at the Eolos Field Station at 
Rosemount, Minnesota, USA, an open agricultural field ideal 
for controlled experiments. Non-harmful smoke plumes were 
generated using a high-density smoke generator that 
combined food-grade chemicals (glycerin, propylene glycol, 
and artificial smoke fluids) in proportions, producing the 
plume shown in Figure 6. Deployments were performed under 
S-SE winds, with speeds of 4.9-6.7 m/s (11–15 mph) and 
gusts up to 8.8m/s, and temperatures around 25°C, ensuring 
optimal visibility and safe drone operations. Before each 
experiment, all scripts for smoke tracking were initialized, 

 
Figure 5. Illustration of (a) top-view images and (b) the metrics used to 

evaluate the performance of our drone-based smoke tracking system.  



  

including image capture, smoke segmentation, and the 
generation of drone control commands (either PID- or DRL-
based). The drone, set to ‘GUIDED’ mode, responded to 
autonomous control commands only when the smoke plume 
was established. The test began with the drone hovering near 
the plume’s dispersing region, after which it autonomously 
tracked the smoke by adjusting its trajectory in response to 
wind direction changes. Experiments were conducted using 
both PID and DRL control algorithms in separate tests. In 
both cases, the drone consistently maintained its track as the 
plume shifted, dynamically adjusting its trajectory to follow 
the plume and eventually reach the smoke source. As shown 
in Table 2, the field performance metrics indicate that the 
DRL controller performs better than the PID controller in 
terms of staying inside the smoke plume for a longer period, 
achieving a �̃8 of 72.7% compared to 71.2% for PID. 
However, the PID controller maintained closer proximity to 
the smoke plume core, with ���=6.4 compared to ���=8.1 for 

the DRL controller. The metrics  &),�(
 and ��) also suggest 

that PID remained slightly closer to the smoke plume than 
DRL. However, unlike in the simulation, it was not possible 
to maintain identical smoke conditions during the PID and 
DRL experiments in the field, meaning the results may not 
quantitatively mirror the trends observed in simulation. 

 ����%�  &�,�(
�%� ��)�%�  &),�(
�%� �̃8�%� 

PID 6.4 21.0 3.6 10.0 71.2 

DRL 8.1 27.8 4.1 12.2 72.7 

Table 2. Performance Metrics evaluated in field deployment 

V. CONCLUSION AND DISCUSSION 

This paper presents a novel autonomous drone-based 
smoke plume tracking system designed to effectively navigate 
and track plumes even in highly unsteady and challenging 
atmospheric conditions. Our system integrates both hardware 
and software advancements, along with a comprehensive 
simulation environment to ensure robust performance in both 
controlled and real-world settings. From a hardware 
perspective, the drone is equipped with a quadrotor platform 
featuring high-resolution imaging systems and an advanced 
onboard computing unit. Incorporating the Jetson Orin Nano 
with machine vision system for real-time processing and the 
Pixhawk flight controller enables the drone to perform precise 
maneuvers while tracking dynamic smoke plumes. Our 
software architecture implements a two-phase flight 
operation: the descending phase, where the drone detects and 
descends into the smoke plume, and the in-plume tracking 
phase, where it continuously monitors and follows the 

smoke's movement. This process leverages a combination of 
PID control and a DRL controller, enabling the system to 
adapt to changes in plume dynamics and maintain effective 
tracking. We developed a detailed simulation environment 
using Unreal Engine to evaluate the drone's performance 
under various smoke-wind scenarios. The simulation was 
designed to replicate real-world conditions, ranging from 
steady smoke flow to complex, 3D unsteady smoke 
fluctuations. Four test cases were used to assess the system’s 
capabilities, and the results demonstrated that while the PID 
controller performed adequately in simpler scenarios, the 
DRL-based controller excelled in more challenging 
environments with high-frequency fluctuations. Field tests 
corroborated the effectiveness of our approach, yielding 
results consistent with those observed in the simulation. 

Our work extends our previous study [16] by advancing 
the ability to autonomously track smoke plumes in realistic, 
unsteady atmospheric environments. By integrating deep 
learning for smoke detection and segmentation with DRL-
based control, we provide a significant improvement in 
tracking deformable and unpredictable targets, unlike 
previous drone tracking systems that focused on static or 
predictable objects. This system has broad potential 
applications beyond smoke tracking. It opens new 
possibilities for drone-based monitoring and analysis in areas 
such as wildfire monitoring, air quality assessment, 
environmental hazard tracking, and particle transport studies. 
The system’s ability to track dynamic, irregular plumes could 
be particularly useful for emergency response operations and 
studying atmospheric phenomena like fog, pollution clouds, 
and volcanic ash plumes. Additionally, the successful 
integration of DRL for real-time decision-making in complex 
environments represents a major step forward in autonomous 
drone control and could be applied to other scenarios 
involving fluid dynamics or airborne particle tracking. 

Despite promising results in both simulations and field 
tests, several limitations remain. The smoke detection and 
segmentation model, trained on specific datasets, may not 
generalize well to all types of smoke or atmospheric 
conditions, especially in extreme environments. Furthermore, 
field testing has so far been conducted in relatively controlled 
settings, and more rigorous testing in harsher and more 
unpredictable conditions will be necessary to validate the 
system's robustness. Future work will focus on improving the 
generalization of the smoke detection and segmentation 
models, enhancing the DRL controller to handle more 
extreme environmental changes, and expanding the system’s 
capabilities for fully autonomous operation with minimal 
manual intervention. We will also explore extending this 
approach to other atmospheric and environmental 
applications, such as tracking fog, pollution, or ash plumes. 
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Figure 6. Field demonstration of autonomous drone-based smoke tracking 
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