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Abstract— This paper presents a novel autonomous
drone-based smoke plume tracking system capable of
navigating and tracking plumes in highly unsteady
atmospheric conditions. The system integrates advanced
hardware and software and a comprehensive simulation
environment to ensure robust performance in controlled
and real-world settings. The quadrotor, equipped with a
high-resolution imaging system and an advanced onboard
computing unit, performs precise maneuvers while
accurately detecting and tracking dynamic smoke plumes
under fluctuating conditions. Our software implements a
two-phase flight operation: descending into the smoke
plume upon detection and continuously monitoring the
smoke's movement during in-plume tracking. Leveraging
Proportional Integral-Derivative (PID) control and a
Proximal Policy Optimization (PPO) based Deep
Reinforcement Learning (DRL) controller enables
adaptation to plume dynamics. Unreal Engine simulation
evaluates performance under various smoke-wind
scenarios, from steady flow to complex, unsteady
fluctuations, showing that while the PID controller
performs adequately in simpler scenarios, the DRL-based
controller excels in more challenging environments. Field
tests corroborate these findings. This system opens new
possibilities for drone-based monitoring in areas like
wildfire management and air quality assessment. The
successful integration of DRL for real-time decision-
making advances autonomous drone control for dynamic
environments.

1. INTRODUCTION

The atmospheric transport of Particulate Matter (PM) is an
interdisciplinary field with profound implications for
environmental science, climate modeling, and public health
[1-3]. Examples of such transport include the dispersion of
smoke plumes from forest fires, the distribution of volcanic
ash during eruptions, and the movements of sand, dust, or
snow migration by wind [4-7]. Understanding the dynamics of
these particles is vital for predicting their environmental and
health impacts, including effects on climate change, ecosystem
dynamics, and respiratory health issues.

These particle transports usually span a wide range of
scales, from the kilometer-scale movement of flows to the
micrometer-scale size of particles [8]. Particle morphology
and composition significantly influence their dispersion, yet
existing field data and measurement tools are insufficient for
accurately tracking these properties, which is critical for
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modeling [9]. Current methods like lidar and satellite imaging
effectively capture large-scale particle movements but lack the
resolution to provide detailed particle characteristics [8, 10],
whereas in situ PM sensors, which estimate particle size
distribution based on light scattering or aerodynamic
properties, often rely on assumptions, leading to uncertainties,
especially for irregular particles like volcanic ash [11-15].

In response to these challenges, Bristow et al. introduced
an innovative autonomous drone system equipped with a
Digital Inline Holography (DIH) sensor for mapping particle
distribution within a smoke plume [16]. In their approach, the
drone initially flies above the plume, capturing top-down
images using a machine vision camera. These images are
analyzed in real time using optical flow techniques to extract
plume flow information, which is then used to guide the
drone's navigation within the plume. Their system successfully
navigated through smoke and monitored changes in particle
properties during controlled experiments. However, their
method's significant limitation was its reliance on top-down
imaging for flow analysis, lacking intelligent navigation once
the drone entered the plume. This absence of feedback control
within the smoke hindered the drone's ability to adapt to shifts
in wind direction, leading to inconsistent tracking in real-
world scenarios characterized by rapidly changing wind
patterns and turbulent environments. Therefore, we aim to
overcome these limitations by developing an advanced
computer vision-based control system. This system enables
the drone to dynamically adjust its trajectory and respond to
directional changes in the plume caused by shifting winds,
thereby enhancing the performance in real scenarios.

To date, there appears to be a paucity of research
specifically focusing on drones for tracking atmospheric
particle transport like smoke plume dispersion. Relevant
studies in this field have primarily concentrated on employing
drones to track more predictable static or dynamic objects,
such as vehicles, people, or other drones [17, 18]. The methods
typically include tracking the motion of the target object within
the camera frame [18-21] or actively following the target using
the drone. Object detection is achieved in these scenarios using
traditional image processing [19, 22] or deep learning
approaches [23-25]. The subsequent tracking maneuvers are
then executed using PID controllers [18] often coupled with
Kalman filtering [20] to address uncertainties.

However, these approaches are primarily suited for well-
defined and predictable objects, and they fall short when
applied to unpredictable objects with complex nature of
atmospheric flows like smoke. Atmospheric particle transport,
such as smoke plumes or dust clouds, is fluid and dynamic,
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differing significantly from the more predictable objects
typically tracked by drones [17, 18], [22]. This fluidity
requires algorithms that adapt to continuously changing
shapes, densities, and movements. Additionally, the
environmental conditions where these flows occur, such as
varying wind speed, direction, and turbulence, add complexity
that current tracking systems, optimized for controlled settings
[18, 26], struggle to handle. The current detection algorithms
used on drones often produce bounding boxes that deviate
from the actual centroid of the dynamic plume, leading to
inaccurate tracking. Moreover, higher inference times cause
delays, resulting in slow or reactive drone responses during
rapid shifts in smoke flow. These challenges underscore the
need for a real-time adaptive tracking solution capable of
managing the unpredictability of atmospheric flows.

Recent advancements in DRL-based drone navigation
have been explored to enhance adaptability and robustness in
dynamic and unpredictable environments [27]. These methods
include vision and depth-based localization and navigation,
which are primarily applied to object avoidance, tracking, and
drone racing applications [26, 28-30]. Despite the potential of
DRL-based techniques, no prior research has focused
specifically on using these methods to track and follow
atmospheric flows, such as smoke plumes. Adapting DRL-
based drone navigation to atmospheric flow tracking presents
unique challenges, mainly because existing methods designed
for object tracking do not adequately address the complexities
of atmospheric particle transport.

To address these gaps, our study proposes a novel
approach to integrating active deep learning, computer vision,
and advanced control strategies when the drone gets inside the
smoke plume. This enables the drone to adjust its trajectory
within the plume, targeting more concentrated areas despite
dynamic changes in wind conditions. This approach seeks to
enhance the robustness of autonomous drone systems in
tracking realistic and constantly deforming atmospheric flows
in real-time based on their changing characteristics and the
surrounding environmental conditions. By integrating real-
time environmental data into tracking, our system seeks to
achieve a level of adaptability and precision currently lacking
in drone-based tracking technologies.

The structure of this paper is as follows: Section II
describes the proposed drone system in detail. In Sections III
and IV, we demonstrate the effectiveness of our approach
through simulation and real-world field deployments. Finally,
we summarize our findings and discuss their implications.

II. METHODOLOGY

A. Overview

Our autonomous drone-based smoke tracking system
operates on a quadrotor platform equipped with a machine
vision camera and an edge computing device for real-time
processing, supporting tasks such as YOLO-based [31] smoke
detection and control algorithms using PID/DRL controllers.
As depicted in Figure 1, the system operates in two key phases:
the descending phase and the in-plume tracking phase. In the
descending phase, the drone begins by positioning itself above
the smoke plume, using the YOLO-based smoke detection
algorithm to identify the initial presence of smoke, and then
initiates its descent. A PID controller governs the drone's
trajectory, ensuring stable movement towards the smoke
plume dispersion region, while optical flow aids in aligning
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Figure 1. Autonomous drone-based smoke tracking system working principle.

the drone with the direction of the smoke flow. Upon reaching
the plume, the system transitions into the in-plume tracking
phase, triggered by detecting the smoke segment. During this
phase, the camera reorients to maintain a continuous view of
the smoke and uses YOLO-based segmentation to localize
smoke in the frame. The drone's trajectory is adjusted by a
combination of a PID and a PPO-based DRL controller,
ensuring that the drone remains within smoke even as wind
shifts and the plume changes direction, allowing the drone to
continuously track the densest regions of the smoke.

B. Hardware

The drone hardware consists of a quadrotor body, a high-
resolution imaging system, and an onboard computing unit, as
illustrated in Figure 2. The system builds on our previous
design detailed in [16], incorporating upgrades to the imaging
system and the onboard edge computing device to enhance
real-time autonomy. Specifically, the core computational unit
has been upgraded to the Nvidia Jetson Orin Nano, delivering
up to 40 TOPS—nearly double the performance of the
previous Jetson Xavier NX. It operates on Linux (Jetpack
5.1.3, Ubuntu 20.04 LTS, Linux Kernel 5.10) with ROS
Noetic for efficient communication, boots from an NVMe
SSD, and utilizes TensorRT to accelerate deep learning
inference. To handle the high memory demands of DRL tasks,
an additional 8GB of swap space has been added to the
existing 8GB of RAM. The flight controller has been upgraded
to the Pixhawk 6C (from Pixhawk 4), which interfaces with
the Jetson through MAVROS for MAVLink communication
and integrates RTK technology with GPS to achieve
centimeter-level positioning accuracy. The machine vision
system has been enhanced with a 12-megapixel ArduCam,
replacing the previous GoPro camera to minimize latency and
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Figure 2. Autonomous drone-based smoke tracking system hardware.
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maintain high resolution with minimal distortion. The camera,
mounted on a gimbal for both top-down and in-plume views,
operates at a sensor size of 640 x 480 pixels at 30 frames per
second. These upgrades significantly enhance real-time
processing and autonomous control, improving the drone’s
multi-phase and multi-modal smoke-tracking capabilities.

C. Algorithm and Software Architecture

As depicted in Figure 3, the framework of the autonomous
drone operation algorithm is divided into two main phases: the
descending phase and the in-plume tracking phase, each
comprising several steps. Precisely, the descending phase
consists of the following steps:
1) Hovering and Smoke Detection Setup: The drone hovers
above the smoke plume, with the state set to 'GUIDED' to
enable autonomous controls from the Jetson module, and the
gimbal pitches down the camera to capture a top-down view.
2) Smoke Detection: A detection node processes the top-
down images using a custom-trained YOLOv8m model to
detect the smoke plume with bounding boxes.
3) Optical Flow Analysis: Once smoke is detected, the drone
halts all movement, and RAFT Optical Flow [32] analysis
begins. The optical flow node processes the sequential
bounding boxes to compute the smoke flow’s directional
vector until the mean direction gets computed.
4) Yaw Alignment and Descent: The drone yaws to align
against the smoke flow and initiates its descent. A PID
controller maintains the smoke bounding box in the upper half
of the frame, ensuring the descent within the smoke dispersion
area. The drone descends until it is entirely inside the smoke.

Once the drone reaches the target altitude, it switches to the
in-plume tracking phase, adjusting the gimbal for a forward
view from within the plume toward the smoke source. The in-
plume tracking phase proceeds using the following steps:
1) Smoke Segmentation: At this stage, the detection node is
disabled, and a smoke segmentation node takes over. The node
uses a YOLOv8m-seg model trained to identify and segment
denser regions within the smoke plume. It validates segments
that exceed a set threshold and calculates the centroid of each
valid segment by averaging the x and y coordinates,
representing the densest smoke region. This data, including the
segmentation area, centroid location, and mask, is used as
input for drone trajectory control.
2) Trajectory Control: The drone’s movement is adjusted by
either a PID or DRL controller. The PID controller calculates
the positional error between the smoke centroid and the center
of the camera frame, generating velocity commands to adjust
the drone’s position along the horizontal and vertical axes. In
contrast, the DRL controller processes the binary smoke
segmentation mask through an actor-critic policy network,
selecting actions from a discrete set of actions to maneuver the
drone. The main components shown in Figure 3 operate at
varying frequencies - the YOLOvVS8-based smoke segmentation
runs at 30 Hz, performing real-time segmentation of incoming
camera frames. The DRL policy inference, which determines
actions based on binary smoke segmentation masks, operates
at 10 Hz. Lastly, the action execution, which sends velocity
commands to the flight controller via MAVROS, runs at 20 Hz
to execute the actions inferred by PID or DRL controller.
While the PID provides faster, more reliable responses when
well-tuned, the DRL controller excels in dynamic or
unpredictable environments. Currently, the system allows
manual switching between the two controllers, but future
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Figure 3. The framework of the autonomous drone operation algorithm.

versions will incorporate auto switching based on real-time
smoke conditions to optimize performance. Further details on
DRL customization are discussed in the following sections.

D. DRL Drone Control Algorithm

Our study employs PPO, a widely used DRL algorithm
implemented using the Stable Baselines3 library and OpenAl
Gym environments. PPO is known for its stability, robustness
in high-dimensional and stochastic environments, making it
will-suited for the unpredictable nature of smoke plume
dynamics. It operates using an actor-critic framework, a policy
gradient method, where the actor proposes action probabilities,
and the critic evaluates their expected value. PPO employs a
clipped objective function to ensure stable learning, preventing
extensive, destabilizing policy updates crucial for highly
dynamic environments like smoke. PPO has been widely
applied in various drone control tasks, such as autonomous
maneuvering [33], drone tracking [34], and path planning [35].
However, adapting this approach to the unique challenges of
smoke plume tracking required several adaptations.
1) State of the Agent (Drone): Unlike most DRL-based drone
control, smoke plume tracking presents unique challenges: the
agent’s kinematic state (e.g., velocity, body rates, etc.) relative
to the smoke flow cannot be accurately measured. Therefore,
we defined the agent's state solely using single-channel binary
images generated from the smoke segmentation model, as
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shown in the “Smoke Segmentation Mask” window in the top-
right of Figure 4. These images feature white regions
representing the smoke and black regions corresponding to the
surrounding environment. This formulation effectively
captures the location and shape of the smoke relative to the
drone. Additionally, the variation in the smoke’s dynamic
location and shape, captured across consecutive frames, is
used to train the policy. Thus, the policy learns from both the
spatial and temporal information regarding the shape of
smoke. This approach provides sufficient state information of
the agent to effectively track the smoke plume, maximizing
rewards and eliminating the need for the kinematic states.

2) Convolutional Neural Network (CNN) Architecture for
Actor-Critic Framework: The backbone of our DRL
controller is a CNN integrated into the actor-critic network of
the PPO framework, designed to handle the unique visual
features of smoke plumes- input layer to process the single-
channel smoke segmentation masks of size 320x320 pixels,
three convolutional layers with increasing filter depths (32, 64,
128) and strides to reduce spatial dimensions, followed by
ReLU activation functions, a flattening layer converting the
2D feature maps into a 1D feature vector, and finally, a fully
connected layer outputs a fixed-size feature vector that is fed
into both the policy (actor) and value (critic) networks. This
architecture is optimized for efficient feature extraction from
the binary smoke masks with low latency, enabling real-time
operation on the resource-constrained Jetson platform.

3) Discrete Action Space: The DRL predicts within a discrete
action space with seven movement options [0-6], each
corresponding to predefined velocities ;, 1, and V, (in m/s)
along the drone's horizontal (y) and vertical (z) axes with
constant velocity along the forward direction (x): [0] Up (15,=0,
V, >0); [1] Hard left (j,=—mV,, V,=0); [2] Left (j,=-V;,, V,=0);
[3] No movement (V;, 1,=0); [4] Right (,,=V;,, V,=0); [5] Hard
right (V,=ml;,, 1,=0); [6] Down (V,=0, V,<0), where m is the
multiplying factor for faster velocities and magnitudes of 1,
Vy, V, and m has been empirically assigned. The range of
actions, from subtle actions (left, right) to more aggressive
maneuvers (hard left, hard right) offer the flexibility needed to
navigate effectively inside smoke. These high-level velocity
commands are published to the MAVROS topic
"/mavros/setpoint_velocity/cmd_vel” to communicate with
the flight controllers that compute individual motor signals
needed to achieve the targeted velocities.

4) Reward Function: The reward function is formulated to
incentivize the drone to track denser smoke by positively
rewarding actions that make the drone move towards the

segmentation mask

g b = i
Figure 4. Simulation of the deployment of autonomous drone-based smoke
tracking system at Eolos Field Station, Rosemount, Minnesota, USA.
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smoke. The reward is based on the smoke’s location in the
image, which is divided into seven regions, and the DRL
controller’s prediction [0-6], which corresponds to the seven
image regions and is described in detail in Figure 5.

5) Data Collection for Smoke Segmentation: The smoke
segmentation model is trained on simulated and real-world
smoke data for generalization. To account for real-world
ambient lighting variations, we collected smoke images at
different times and under various weather conditions,
including bright, sunny, and cloudy days. The dataset includes
over 2,000 manually annotated images. Despite this, we found
that fine-tuning the camera settings (e.g., exposure time,
saturation, etc.) was necessary before each deployment to
ensure accurate smoke segmentation. Currently, the model is
trained on white smoke images; future work will include
smoke of different colors to improve generalization.

6) DRL-Controller Training Configuration: To ensure
robustness, we simulated smoke with realistic disturbances in
Unreal Engine by varying wind speed and direction. During
training, the wind conditions randomly alternated between
steady linear and highly fluctuating flows with different
oscillation frequencies, allowing the agent to adapt to various
real-world conditions and improve performance.

The DRL controller was trained with the following
hyperparameters to promote efficient learning and stability: a
learning rate of 3x10~, a discount factor y = 0.99, a batch size
of 256, 2048 steps per update, and 10 epochs per update, with
a total training duration of 1 million time steps. This
configuration ensures adaptability and stable learning.

7) Inference and Simulation-to-Real (Sim2Real) Policy
Transfer: During inference, the trained model applies the
learned policy to control the drone’s movements in simulated
and real-world smoke environments. The segmentation model,
trained on actual and simulated smoke, generates binary
smoke masks. The DRL controller then uses these binary
smoke masks to predict drone actions mapped to drone control
commands, as discussed in section II.D.3. Since the
segmentation model handles both the simulated and actual
smoke images and the DRL controller functions solely on the
binary smoke segmentation masks, this approach helps in
seamless policy transfer from simulation to real-world and
results in effective drone navigation across both environments.

III. SIMULATION ASSESSMENT

A. Simulation Environment

Developing an autonomous drone system for smoke plume
tracking presents several challenges, including the need for
large, open testing areas, unpredictable drone behavior that can
lead to costly crashes, and weather conditions like wind and
rain. We developed a simulation environment using Unreal
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Figure 5. Illustration of the reward function, where X; is the smoke centroid
location in image, pred is the DRL controller’s prediction, and R is the reward.
The camera image is partitioned into 7 regions symmetrical about the image
center (IC), with the dimensions indicating fractions of the total image length.
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Engine 5.1.1 to overcome these challenges and enable rapid
algorithm testing and refinement under controlled, realistic
smoke-wind scenarios. The simulation replicates real-world
conditions at our primary field-testing site, the Eolos Field
Station in Rosemount, Minnesota, USA. The simulation
includes terrain, vegetation, and infrastructure to create an
environment that mirrors the testing site closely. For smoke
generation, we utilized Unreal Engine's Niagara Plugin, which
includes Niagara Fluids, Chaos Niagara, and the Niagara
Custom Data Interface, to produce realistic smoke dynamics.
The setup allows complete control over wind speed and
direction through a custom blueprint in the event graph, which
generates time-dependent wind vectors supporting variable
and constant direction wind flows, allowing flexibility in test
conditions. The drone’s flight control is simulated using the
PX4 Software-in-the-Loop (SITL) integrated with AirSim,
which simulates drone sensors. These data are published on
ROS topics in Windows Subsystem for Linux (WSL2)
emulating a virtual Linux environment similar to a drone with
Jetson. The MAVROS package ensures seamless MAVLink-
based communication with PX4 SITL for autonomous drone
control. Overall, this simulation provides a robust platform for
training, algorithm feasibility testing, and smoke detection
under a wide range of realistic smoke-wind scenarios. The
flexibility and reproducibility of the Unreal Engine smoke
simulation allow us to evaluate the drone's performance in
diverse test conditions before field deployment.

B. Performance Assessment Using Simulation

The smoke tracking performance of the drone, using both
PID and DRL-based control algorithms, was evaluated under
different smoke generation and wind conditions in the
simulation. Four test scenarios, with increasing levels of
tracking difficulty, were designed to assess the algorithms:
1) Steady Smoke Flow (S): The smoke plume is steady under
constant streamwise wind, Vj,, ,, of 4.5 m/s with no fluctuations
in direction or speed. This represents a stable and predictable
condition, ideal for baseline performance evaluation.
2) Unsteady Smoke Flow with Low-Frequency Horizontal
Fluctuation (UL): The smoke experiences a mild low-
frequency fluctuating crosswind, which is superimposed on
top of the primary wind of , ,, = 4.5 m/s. The crosswind is
specified as V}, , = 1.355in(0.02mt) m/s with an amplitude
of 1.35 m/s and a frequency of 0.01 Hz.
3) Unsteady Smoke Flow with High-Frequency Horizontal
Fluctuation (UH): The smoke experiences a stronger high-
frequency crosswind superimposed on top of the primary
wind ¥, ,, = 4.5 m/s. The crosswind is specified with , , =
1.95sin(0.047t) m/s having an amplitude of 1.95 m/s and
0.02 Hz frequency. Under such conditions, the smoke changes
direction more rapidly, increasing tracking challenge.
4) Unsteady Smoke Flow with 3D Fluctuation (U3D): Both
horizontal and vertical wind fluctuations are introduced on
top of the primary wind V,,, = 4.5 m/s to increase the
tracking challenges further. The horizontal crosswind is
specified as V,, = 1.95sin(0.04nt) (amplitude 1.95 m/s,
frequency 0.02Hz), and vertical wind V,,=
0.3 sin(0.027t) (amplitude 0.3 m/s, frequency 0.01 Hz).
Under these, the plume fluctuates in a complex 3D pattern.

To accurately assess the drone’s smoke tracking
performance, we positioned an observer drone equipped with
a camera at a fixed altitude above the smoke plume, providing

307

a top-down view of the tracking drone, as shown in Figure 6a.
As the tracking drone enters the smoke plume, visual methods
like bounding boxes become ineffective. Instead, we mapped
the tracker drone’s 3D GPS coordinates to 2D-pixel
coordinates within the observer drone’s camera image. Using
the observer drone’s GPS location and camera focal length
and applying the haversine formula, we computed the image's
dimensions in the world frame. We used an affine
transformation matrix to map each pixel to GPS coordinates.
The inverse transformation allowed us to accurately track the
drone's location in the camera frame without relying on
image-based detection techniques.

As shown in Figure 6b, custom metrics are introduced to
compare PID and DRL controllers based on the tracking
drone’s position relative to the smoke plume contour to
evaluate how close the drone stays within the plume center
during the entire tracking duration. The plume contour is
generated through thresholding and extracting the largest
contour, with the red circle representing the drone’s location
and the green spline depicting the smoke plume's mean line
(skeleton). In total the following five metrics are used for
performance evaluation including normalized average
distance of the drone from the mean line fi,, = mean(d,,) /
Lyer, normalized maximum distance of the drone from the
mean line &m_max (dm)/Lyef, normalized average distance
when outside the smoke plume [, =mean(d.) / Lref,
normalized maximum distance when outside the smoke
plume dc,max = (d)/Lyes, percentage of time inside the
smoke plume fp, where L,.r is the total smoke tracking
length, d,, is the drone's distance from the smoke mean line,
and d_ is the distance from the smoke contour.

Table 1 summarizes the performance metrics for both PID
and DRL controllers under different test conditions. In steady
smoke flow (S), both PID and DRL controllers perform
similarly, effectively tracking the plume with comparable fi,,
and £y , indicating that both controllers can track the steady
smoke plume effectively. Under low-frequency, low-
amplitude unsteadiness (UL), the DRL controller shows a
marked improvement in tracking the mean line of the plume.
The fI,,, drops significantly from 4.0% (PID) to 1.8% (DRL),
highlighting its ability to maintain closer alignment with the
plume. The variability remains comparable, indicating that
DRL’s performance gain is not due to increased instability but
improved trajectory correction. In higher-frequency unsteady
flow (UH) with stronger crosswinds, the DRL outperforms
PID across all metrics, notably improving in dc‘max, where
the DRL controller reduces the deviation to 12.3%, compared
to 18.6% for PID, and significantly extending the £z achieving
85% compared to 69% for PID. Finally, under 3D
unsteadiness (U3D), the DRL controller exhibits significant
improvements across all metrics, showing a much closer
alignment with the smoke, i, significantly reduced

compared to PID, and achieves a greater £z. Overall, the DRL

(b) 2
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| IDrone Location
Figure 6. Illustration of (a) top-view images and (b) the metrics used to
evaluate the performance of our drone-based smoke tracking system.
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controller demonstrates superior adaptability in this highly
dynamic and complex smoke environment.

maintain identical smoke conditions during the PID and DRL
experiments in the field, meaning the results may not

Table 1. Performance metrics were evaluated using the simulation, and mean
and standard deviation were calculated based on five tests under each
condition for both PID and DRL controller separately.

IV. FIELD DEMONSTRATION

Field testing was conducted at the Eolos Field Station at
Rosemount, Minnesota, USA, an open agricultural field ideal
for controlled experiments. Non-harmful smoke plumes were
generated using a high-density smoke generator that
combined food-grade chemicals (glycerin, propylene glycol,
and artificial smoke fluids) in proportions, producing the
plume shown in Figure 7. Deployments were performed under
S-SE winds, with speeds of 4.9-6.7 m/s (11-15 mph), gusts
up to 8.8m/s, and temperatures around 25°C, ensuring optimal
visibility and safe drone operations. Before each experiment,
all scripts for smoke tracking were initialized (image capture,
smoke segmentation, and drone control with either PID or
DRL), and the drone is set to ‘GUIDED’ mode to respond to
autonomous control commands only when the smoke plume
was established. The test began with the drone hovering near
the plume’s dispersing region, after which it autonomously
tracked the smoke by adjusting its trajectory in response to
wind direction changes. Experiments were conducted using
both PID and DRL control algorithms in separate tests. In
both cases, the drone consistently maintained its track as the
plume shifted, dynamically adjusting its trajectory to follow
it and eventually reach the smoke source. As shown in Table
2, the field performance metrics indicate that the DRL
controller performs better than the PID controller in staying
inside the smoke plume for a more extended period, achieving
atg of 72.7% compared to 71.2% for PID. However, the PID
controller maintained closer proximity to the smoke plume
core, with f[I,,=6.4 compared to [,,=8.1 for the DRL
controller. The metrics dc,max and fi. also suggest that PID
remained slightly closer to the smoke plume than DRL.
However, unlike in the simulation, it was not possible to

Top view

Drone View
(smoke segmentation)

Side view

Figure 7. Field demonstration of autonomous drone-based smoke tracking
algorithm at Eolos Field Station, Rosemount, Minnesota, USA.
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I ) | domac ) | 8e) | doma®) | Ex (%) quantitatively mirror the trends observed in the simulation.

” PID 1.61+0.2 7.5+2.1 1.440.6 2.940.7 95.1+2.5 o (%) &m,max(%) (%) dc,max(%) = (%)

DRL | 1.440.2 7.0+2.3 1.8+12 40433 | 941414 D oa 710 Y3 100 712
| P 4.010.4 119422 2.5+1.3 6.613.1 87.1+£2.2 DRL 8.1 27.8 4.1 12.2 72.7
=)

DRL 18205 10.142.3 25411 84433 869+138 Table 2. Performance Metrics evaluated in field deployment
o PP | 72415 | 2814109 | 53438 | 186474 | 69.4447 ANDD
S oRe | 54411 | 260£84 | 46431 | 123465 | 850464 V. CONCLUSION AND DISCUSSION
a| D | 41£06 | 155465 | 45426 | 12.8459 | 79.5423 This paper presents an advanced autonomous drone-based
faa) . . .
Sl o | 19405 | 106444 | 15421 43443 | 95.0+4.1 smoke plume tracking system capable of navigating and

tracking plumes in highly unsteady atmospheric conditions.
The system integrates sophisticated hardware and software in
a quadrotor platform with imaging systems and an onboard
computing unit. The drone tracks dynamic smoke plumes
using a combination of PID and DRL controllers. Our method
implements a two-phase flight operation: the descending
phase, during which the drone descends into the smoke
plume, and the in-plume tracking phase, during which it
continuously tracks the smoke's movement. Simulations and
field tests demonstrate that while the PID performs
adequately in simpler scenarios, the DRL-based controller
excels in challenging environments with high fluctuations.
Field tests corroborated the effectiveness of our approach,
yielding results consistent with those observed in the
simulation. This system significantly improves the ability to
autonomously track smoke plumes in realistic atmospheric
environments, providing a substantial advancement over
previous methods focused on static or predictable objects.
This work builds on our previous study by enabling
autonomous tracking of dynamic smoke plumes and
enhancing real-time control through deep learning and DRL.
The system has broad potential applications beyond smoke
tracking, including wildfire monitoring, air quality
assessment, environmental hazard tracking, and particle
transport studies. Its ability to track dynamic plumes could
benefit for emergency response operations and study
atmospheric phenomena like fog, pollution clouds, and
volcanic ash plumes. The successful integration of DRL for
real-time decision-making in complex environments
represents a major step forward in autonomous drone control.
Despite promising results, several limitations persist. The
smoke detection and segmentation model, trained on specific
datasets, may not generalize effectively to all smokes or
atmospheric conditions. Furthermore, more rigorous testing
in harsher and more unpredictable conditions is required to
validate the system's robustness. Future work will focus on
improving the generalization of the smoke detection and
segmentation models, enhancing the DRL controller to handle
more extreme environmental changes, and expanding the
system’s capabilities for fully autonomous operation with
minimal manual intervention. We will also explore extending
this approach to other atmospheric and environmental
applications, such as tracking fog, pollution, or ash plumes.
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