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ABSTRACT

This paper explores the hypothesis that integrating explicit sparse representation
priors into a deep Super-Resolution CNN through feature map regularization will
yield a superior trade-off between pixel fidelity (PSNR and SSIM) and perceptual
quality (LPIPS and FID) compared to using either the dense CNN architecture or
the classical sparse coding method alone. Moving beyond the limitations of the
shallow SRCNN and standard loss functions, we utilize a deeper, residual network
architecture. The core innovation is the direct integration of sparse representation
by imposing an L1 sparsity constraint on intermediate feature maps. This spar-
sity constraint compels the network to maintain a high-quality, edge-preserving
feature representation, directly addressing the need for a more substantial hybrid
model than simple regularization. The model is optimized using a hybrid loss in-
corporating fidelity and perceptual terms. Current work focuses on implementing
Deep Sparse Feature Super-Resolution (DSFSR), which imposes an L1 sparsity
constraint on intermediate feature maps to balance fidelity and perceptual quality,
with the intent to highlight a superior trade-off between these metrics compared to
standard sparse coding or the dense CNN mentioned earlier. An ablation study is
also performed to support our hypothesis, which determines the best place to put
the L1 loss in our DSFSR Model. All the relevant code and documentation for this
project can be found in our GitHub Repository linked here: EE5561 Final Project.

1 INTRODUCTION

The need for High-Resolution (HR) images is critical in fields like medicine, surveillance, and
remote sensing. Single Image Super-Resolution (SISR) is the inverse problem of reconstructing
a visually correct HR image from a single Low-Resolution (LR) input, requiring effective prior
knowledge to succeed.

Project Motivation and Evolution: Our initial proposal, which focused on combining the shallow
and dated SRCNN architecture with standard L1 regularization, was deemed insufficient in com-
plexity for a graduate-level project. In response, this project evolved to a more advanced, integrated
hybrid approach. The primary motivation is to integrate the structural and edge-preserving benefits
of sparse feature representation directly into a deeper, residual-based Convolutional Neural Network
(CNN). This technical shift ensures greater novelty and a more complex foundation.

Problem Definition: This project addresses the challenge of creating a two-stage Super-Resolution
system using a fundamental integration of sparse optimization.

• Final Report Focus (DSFSR) : Current work at this stage of the project focuses on Deep
Sparse Feature Super-Resolution (DSFSR), a model that imposes an L1 sparsity constraint
on intermediate feature maps to balance fidelity and perceptual quality. Specifically, this
report focuses on determining where, how, and why the L1 sparsity constraint is applied
to the intermediate feature maps of the DSFSR model. We support our findings with an
ablation study explained in Section 3.

• Future Work (EDLSR and SR-INR) : Future work for this project involves the imple-
mentation of a more complex End-to-End Dictionary Learning system, where the sparse
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priors are learned jointly with the network weights. The parallel objective is to explore SR
using a Generative Implicit Prior, where the traditional dictionary is replaced by an Implicit
Neural Representation (INR).

The evaluation goal for DSFSR is to demonstrate superior performance across a diverse set of met-
rics, balancing pixel fidelity (PSNR, SSIM) with perceptual quality (BRISQUE, LPIPS, FID).

2 RELATED WORKS (UPDATED FROM PROPOSAL)

2.1 SUPER-RESOLUTION CONVOLUTIONAL NEURAL NETWORK (SRCNN)

Convolutional Neural Networks (CNNs) are a type of feed-forward neural network trained using
gradient descent. CNNs are used a lot in image classification and restoration problems due to their
unique characteristics of prioritizing local connectivity and weight sharing mechanisms Xi et al.
(2025). The Super Resolution Convolutional Neural Network (SRCNN) established the first end-to-
end pipeline, using a pre-upsampling strategy (input up-sampled via Bicubic interpolation) followed
by feature extraction, non-linear mapping, and reconstruction.

While the Super-Resolution Convolutional Neural Network (SRCNN) is a crucial step in improving
image enhancement, it’s not without its limitations. The paper by Ward et al. (2019) identified some
core limitations by evaluating SRCNN on metrics of BRISQUE, SSIM, and PSNR.

• SRCNN struggled to reconstruct images degraded with JPEG compression as it isn’t trained
to correct compression artifacts, leaving those low-resolution artifacts to persist in the final
image

• Successive image correcting tends to highlight unnatural edges, leading to an unnatural
image.

• Increasing the scaling factor reduces image quality. Lower scaling factors produce clear
improvements in sharpening/enhancing the image.

2.2 SPARSITY

The sparse representation method of super-resolution is a powerful alternative to traditional meth-
ods like interpolation. This method, proposed by Yang et al. (2010), is that small image patches can
be well-represented by a sparse linear combination of elements from an over-complete dictionary
learned from training data. These elements include features like edges and patterns. The algorithm
is as follows, two dictionaries (Dl and Dh) represent elements from both low-resolution and corre-
sponding high-resolution images, respectively, from the training data. These dictionaries are trained
jointly such that the same sparse coefficient (α) describes corresponding structures in both the low-
and high-resolution patches. Once trained, the algorithm finds the sparse coefficient, α, of each low-
resolution patch from Dl and uses it to index Dh to get the corresponding high-resolution features
and reconstruct the high-resolution patch. Finally, these patches are reconstructed to form a high-
res version of the original low-res image. This method replaces the need for large patch databases
with a compact learned representation, letting us recover high-frequency components like edges and
textures more efficiently. It also ensures these edges and textures are sharper compared to many
traditional methods. One limitation is that dictionary training is computationally expensive.

2.3 VERY DEEP SUPER RESOLUTION (VDSR)

VDSR is a highly accurate single-image super-resolution (SR) method proposed by Jiwon Kim,
Jung Kwon Lee and Kyoung Mu Lee in 2016. It uses a very deep convolutional network inspired
by the VGG-net architecture. It addresses the limitations of earlier, shallower CNNs like SRCNN
by increasing network depth to 20 weight layers Kim et al. (2015). The core idea of VDSR is
that increasing network depth allows the model to utilize more contextual information and boost
accuracy.

• Utilize More Contextual Information: By cascading small 3 × 3 filters many times, the
network exploits contextual information over very large image regions (a large receptive
field), which is crucial for detail recovery in the SR problem.
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• Boost Accuracy: The depth shows a significant improvement in accuracy over shallow
models. VDSR outperformed SRCNN by a large margin Kim et al. (2015).

2.4 END-TO-END SUPER RESOLUTION (SRDD)

The SRDD paper proposes an End-to-End Super-Resolution Network with a Deep Dictionary
(SRDD), aiming to fuse traditional sparse-coding methods with deep learning Maeda (2022). Histor-
ically, sparse coding explicitly learned high/low-resolution dictionaries, a multi-step process that the
SRCNN replaced entirely with implicit dictionary learning via a multi-layered CNN. The core moti-
vation for SRDD is that conventional deep-learning methods, including state-of-the-art ones, suffer
significant performance degradation on out-of-domain images because their implicitly learned HR
dictionaries are ”fragile” to differences in input degradation. SRDD solves this by explicitly learn-
ing the high-resolution dictionary DH using a generator network, where a separate main network
predicts the coefficients (α) for DH to reconstruct the imageMaeda (2022).

2.5 SPARSITY DRIVEN COMPRESSED IMPLICIT NEURAL REPRESENTATIONS (SINR)

The SINR paper provides a key insight for SR models using Implicit Neural Representations (INR)
as a generator Jayasundara et al. (2025). INRs are simple neural networks that define an image as a
continuous function, freeing SR from fixed resolutions. The SINR concept shows that the weights of
these INRs are naturally compressible, similar to how images are compressed, because the weights
tend to follow a Gaussian distributionJayasundara et al. (2025). Using Compressed Sensing (CS),
the INR’s large weight vectors (w) can be turned into a much smaller, sparse code (x), requiring
far less storage. This is achieved using a Random Sensing Matrix (A) that the receiver can recreate
using a simple seed, meaning no extra data needs to be sent. For SR models, this confirms that
making the latent code (z) sparse is effective, and, more importantly, it offers a path to building
an INR generator (Gθ) that is highly compact and efficient, reducing the model’s size significantly
without losing image quality.

3 METHODOLOGY (UPDATED)

3.1 REPLICATION OF CURRENT METHODS

To establish a foundational comparison, we began by replicating key incremental Super-Resolution
(SR) models, evolving from the shallow SRCNN to include crucial architectural and regularization
techniques. All baseline models were trained for 50 epochs using a consistent setup to expedite com-
parison, leveraging pre-trained SRCNN weights from an open-source source project Chandrasekhar
(2023).

1. Incremental Baseline Development

Baseline Model Architecture Core Improve-
ment

Loss Function Optimizer

SRCNN Base 3-Layer CNN NA Standard MSE
Loss

SGD

SRCNN + Spar-
sity

3-Layer CNN L1 Regular-
ization (on
weights)

MSE + L1

Penalty
AdamW

SRCNN +
Residual

3-Layer CNN Residual Learn-
ing: Learning
difference be-
tween LR and
HR image

MSE on Resid-
ual

AdamW

SRCNN + Spar-
sity + Residual

3-Layer CNN Combines
Residual Learn-
ing and L1

regularization

MSE on Resid-
ual + L1 Penalty

AdamW
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2. Implementation Details
• All models were trained for 50 epochs. The SRCNN base model used SGD for histor-

ical fidelity, while all subsequent models utilized the AdamW optimizer.
• We selected AdamW due to its adaptive learning rate and effective weight decay de-

coupling, which ensures the L2 regularization term remains independent and effective
against the adaptive scaling, unlike standard Adam.

• In models incorporating a residual connection, the network learns the residual image
(HR - LR) directly, significantly improving training stability and performance over
learning the full HR mapping.

3.2 VERY DEEP SUPER RESOLUTION (VDSR)

The VDSR model uses a deep, 20-layer CNN architecture pulled from the VDSR paper Kim et al.
(2015).

• Input Preparation: The low resolution input image is up scaled (using bicubic interpola-
tion) to the desired high-resolution size before being fed into the network.

• Deep Feature Mapping: The network consists of a 20 layer stack of Conv2D (3x3 kernel,
64 channel) and ReLU layers. The depth allows the model to learn highly complex and
non-linear mappings to capture a larger receptive field.

• Global Residual Connection: The VDSR uses a global residual connection, basically the
input image is fed back in after the 20-layer network. The loss function is the standard
MSE between the learned and true residual.

• The model is run for 50 epochs with AdamW as the optimizer. A scheduler is used to adjust
the learning rate at 30 and 40 epochs by scaling the LR factor by 0.1. This helps the model
avoid falling into local minima or a plateau.

3.3 DSFSR: DEEP SPARSE FEATURE SUPER-RESOLUTION (COMPLETED WORK)

To create a novel and focused contribution, we implement Deep Sparse Feature Super-Resolution
(DSFSR), a hybrid approach that integrates sparsity constraints directly into the internal feature
representations of a deep SR network. Instead of using the shallow SRCNN architecture, we build
DSFSR on top of an 18-layer VDSR model to leverage the larger receptive field and improved
representation capacity of deep CNNs.
Unlike standard regularization that applies an L1 penalty on network weights or output images,
DSFSR introduces a sparsity regularization term (Lsparsity) on selected intermediate feature maps
(Fi) inside the network. The goal is to encourage sparse activations within the network, so that only
important structures such as edges and textures produce strong responses, while smooth regions
remain mostly inactive. The total loss function is defined as:

LTotal = LReconstruction + λ · ||Fi||1

Unlike classical sparse coding, which enforces sparsity on linear combination coefficients, DSFSR
enforces sparsity on intermediate activation maps after nonlinear transformations, encouraging se-
lective feature responses rather than sparse linear representations.

1. Extracting the Feature Map: During the forward pass, the network outputs both the
predicted residual image and intermediate feature maps. These feature maps correspond to
the activations after the ReLU operation.

2. Calculating the L1 Sparsity Loss: The sparsity loss is computed by taking the L1 norm of
the selected feature map(s), defined as the mean of the absolute values of all activations in
the feature tensor. This penalty encourages many activations to be close to zero, resulting
in sparse internal representations.

3. Combining the Total Loss: The total training loss is computed as the sum of the recon-
struction loss (MSE on the predicted residual) and the sparsity regularization term weighted
by a scalar λ. During backpropagation, gradients from both loss terms jointly update the
network weights, enforcing sparsity in the internal feature representations while preserving
reconstruction accuracy.
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4. Ablation Study on L1 Placement: An ablation study is performed to determine where
sparsity regularization is most effective within the 20-layer VDSR architecture. We evalu-
ate six DSFSR variants by applying the L1 sparsity loss at different depths: the 5th layer,
10th layer, 18th layer, 5 & 10th layers, 10 & 18th layers, and 5 & 10 & 18th layers.
The 5th layer represents early-stage features that capture low-level image information such
as edges and gradients. The 10th layer corresponds to mid-level features where more com-
plex textures and structures emerge. The 18th layer represents late-stage features that are
closely related to the final reconstruction. By comparing these configurations, we aim to
study how sparsity affects different levels of feature abstraction.

5. Expected Outcome of the Ablation Study: We expect that applying sparsity to very
early layers may negatively affect performance, since early feature maps contain both low-
frequency and high-frequency information and are not naturally sparse. In contrast, mid
and late layers are expected to benefit more from sparsity regularization, as these layers
primarily encode higher-level textures and structural details that are naturally sparse in im-
ages. Applying sparsity to multiple layers may further strengthen this effect but could also
lead to over-regularization. This ablation study allows us to empirically identify the most
effective placement of sparsity regularization in DSFSR.

6. Ablation Study on L1 Penalty Strength (λ): After identifying the most effective layer
(10th layer) for applying sparsity, we perform an additional ablation study on the sparsity
weight λ. We evaluate multiple values of λ in the range [1 × 10−4, 3 × 10−3]. Smaller
values of λ impose a weak sparsity constraint and result in behavior similar to the VDSR
baseline, while larger values increasingly suppress feature activations. We observe that
increasing λ improves some quantitative metrics but can also lead to smoother reconstruc-
tions, indicating over-regularization. We expect this ablation to highlight that λ controls the
balance between preserving texture details and enforcing sparse internal representations.

3.4 FUTURE WORK

3.4.1 EDLSR

One future objective is to implement a robust End-to-End Dictionary Learning system, conceptually
derived from SRDD Maeda (2022), where the sparse HR dictionary (DH ∈ RC×N×s2 ) is explicitly
learned jointly with the network weights.

• Design a network that functions as a coefficient predictor, Eϕ, which processes the LR
input (XLR) to output the sparse coefficient map (α ∈ RN×H×W ).

• The HR dictionary DH is implemented as a set of learnable parameters (nn.Parameter) or
generated by a sub-network (such as in SRDD).

• The final HR image (YHR) is reconstructed via a weighted linear combination of the dic-
tionary atoms:

YHR =

N∑
n=1

DH,n ⊗αn

• The system is optimized end-to-end to ensure the sparse priors are learned and specialized
for the SR task.

3.4.2 SR-INR

A parallel objective is to explore SR using a Generative Implicit Prior, where the traditional dic-
tionary is replaced by an Implicit Neural Representation INR Gθ borrowed from the SINR paper
concepts Jayasundara et al. (2025).

• Encoder Block (Eϕ): A CNN (based on VDSR) acts as an encoder, processing the LR
image (XLR) to predict a highly compact latent code (z ∈ RDlatent ).

• INR Block (Gθ): The INR is a small MLP that uses the latent code z as its continuous, non-
linear prior to generate the HR image patch (Ypatch). The INR is defined as a continuous
function fθ(c, z) → v, where c is the coordinate and v is the signal value.
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• Sparsity Objective: The method requires enforcing sparsity directly on the latent code z via
an L1 regularization term in the overall loss function (Lsparsity = λ||z||1).

3.5 SCORE METRICS

To evaluate the different SR models, we use a combination of fidelity-based metrics (PSNR, SSIM)
and perceptual metrics (BRISQUE, LPIPS, FID).

• Fidelity -based Metrics: PSNR (Peak Signal-to-Noise Ratio) measures pixel-level recon-
struction accuracy. Higher PSNR indicates better fidelity. SSIM (Structural Similarity
Index) compares structural information and is more perceptually relevant than PSNR.

• BRISQUE (Blind/Referenceless Image Quality Score) is a no-reference metric that eval-
uates how natural an image looks. Lower scores indicate more realistic textures. In SR,
BRISQUE helps detect oversmoothing, which is common in SRCNN and VDSR.

• LPIPS (Learned Perceptual Image Patch Similarity Zhang et al. (2018)) measures per-
ceptual distance between SR and HR images using deep features from a trained network
(VGG/AlexNet). Lower scores indicate closer perceptual similarity. In SR, LPIPS is an
effective indicator of whether fine textures and high-frequency details are preserved.

• FID (Frechet Inception Distance Heusel et al. (2017)) compares the feature distributions of
an entire set of SR images to the HR ground-truth set using an Inception network. Lower
scores indicate that the SR outputs collectively look closer to real high-resolution images.

Evaluation: All metrics are computed on the same 150-image set. PSNR, SSIM, BRISQUE, and
LPIPS are computed per image, while FID is calculated once per model as a set statistic.

3.6 GOOGLE COLAB

All implementations will be run on Google Colab as it provides ideal Python support and GPU
access. Our models will be run with either the Nvidia A100, L4, and T4 GPUs. The specific type
depends on its performance and availability on Colab.

4 CURRENT RESULTS

4.1 TEST IMAGES

Figures 1 and 3 shows the visual output of all the SR models on test images compared with their
corresponding HR ground truth and LR input images.

4.2 VIOLIN PLOTS

Figures 2 and 4 present violin plots of PSNR, SSIM, BRISQUE, and LPIPS scores for each model.
These plots visualize both the distribution of metrics and the spread/variance of model performance
across the dataset. Figure 4 shows the distribution specifically for the DSFSR models, highlighting
the effect of feature-map sparsity on the overall metrics.
Interpretation: A wide violin shape indicates high variability between images, while a narrow or
peaked shape indicates consistent performance.

5 DISCUSSION AND CONCLUSION

5.1 ABLATION STUDY RECAP

The focus of this report is determining the best placement for the L1 regularizer on intermediate
feature maps. Our ablation study will determine where in the 20 layer VDSR model is best to put
the L1 regularizer loss. One model places L1 regularizer loss after the 5th layer. A snippet of code
in the forward pass logic allows us to determine where we want to place the L1 loss; It is shown on
the following page.
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# Iterate through the sequential module to get the intermediate feature
map

feature_map_i = x
for i, module in enumerate(self.residual_layers):

feature_map_i = module(feature_map_i)

# Assuming an 20-layer VDSR
# The 5th layer is technically the 10th item since each layer has

both conv and ReLU (2*5-1 = 9)
if i == 9:

# Save the intermediate feature map F_i (This is the key for
DSFSR)

intermediate_feature_map = feature_map_i

#The output of the last ReLU in the residual layers
x = feature_map_i

Here are the 6 DSFSR Models we will compare: 5th Layer, 10th Layer, 18th Layer, 5th & 10th
Layer, 10th & 18th Layer, 5th & 10th & 18th Layer. After determining the most suitable for intro-
ducing sparsity, we conduct an additional ablation study on the sparsity weight λ, testing values in
the range [1× 10−4, 3× 10−3].

5.2 DSFSR ABLATION STUDY RESULTS

To analyze the effect of sparsity placement, we compare the mean metric scores in Table 1 together
with the corresponding violin plots in Figure 4 for six DSFSR variants, where the L1 sparsity reg-
ularization is applied at different layers of the 20-layer VDSR model. Based on this comparison,
we therefore fix the sparsity placement at one layer and perform an additional ablation study by
sweeping the sparsity weight λ to understand its impact on model behavior.

• Overall Impact of Sparsity Placement: DSFSR variants perform similarly to VDSR, show-
ing that sparsity acts as a mild regularizer without significantly harming reconstruction
quality or destabilizing training.

• L1 Loss at Early Layer (5th): Applying sparsity at the 5th layer results in slightly improved
BRISQUE and LPIPS but no clear gain in PSNR or SSIM. This suggests that early fea-
ture maps, which contain a mix of low-frequency and high-frequency information, do not
strongly benefit from sparsity constraints.

• L1 Loss at Mid-Layer (10th): Applying sparsity at the 10th layer yields the best overall
trade-off among the tested configurations. This variant achieves the highest mean PSNR
(35.17 dB) and the lowest mean LPIPS (0.1106), indicating improved perceptual similarity
while maintaining strong reconstruction fidelity. This supports the intuition that mid-level
feature maps primarily encode textures and structural patterns that are naturally sparse.

• L1 Loss at Later Layer (18th): Sparsity applied at the 18th layer produces comparable
PSNR and SSIM to the mid-layer variant, while achieving the lowest FID. This suggests
that sparsifying late-stage features may slightly improve the generated images globally,
though the perceptual gains are less consistent than those observed for mid-layer sparsity.

• Multi-layer Sparsity (5 & 10, 10 & 18, 5 & 10 & 18): Applying sparsity to multiple layers
does not lead to further improvements and in some cases, slightly degrades perceptual met-
rics such as LPIPS and FID. This indicates that enforcing sparsity across too many stages
of the network may over-regularize the model and limit its representational flexibility.

• Violin Plot Analysis: The violin plots in Figure 4 show that all DSFSR variants produce
tightly clustered PSNR and SSIM distributions, indicating consistent reconstruction quality
across the dataset. Differences between variants are more visible in LPIPS and BRISQUE,
where the mid-layer sparsity model exhibits a slightly more compact distribution, suggest-
ing more consistent perceptual behavior.

• Qualitative Results: Visually, the HR outputs of test images across different sparsity place-
ments in Figure 3 reveals only subtle differences, which is expected given the strong VDSR
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baseline. However, models with sparsity applied at the mid and late layers tend to produce
slightly cleaner textures and fewer minor artifacts, aligning with the small but consistent
improvements observed in LPIPS and FID scores.

• Results on sweeping the L1 Penalty Strength (λ): Based on the overall performance, ap-
plying sparsity at the mid-layer (10th layer) consistently provides the best balance between
reconstruction fidelity and perceptual quality. We therefore fix the sparsity placement at the
10th layer and sweep the sparsity weight λ over a range of values (1× 10−4 to 3× 10−3).
For smaller values of λ (3× 10−4 and 5× 10−4), the DSFSR model shows behavior close
to the VDSR baseline, with only minor changes in metric scores. As λ is increased to
1× 10−3, we observe consistently lower FID across two independent runs, indicating that
stronger sparsity encourages outputs that are closer to the HR dataset. However, this im-
provement is not consistently reflected in other metrics, and larger values of λ do not lead
to further gains. Overall, this ablation suggests that the sparsity weight primarily controls
a trade-off between conservative, distribution-aligned reconstructions and preserving fine
texture details, with moderate values of λ providing stable performance and larger values
leading to diminishing returns. Unlike dropout, which randomly suppresses activations dur-
ing training, the proposed L1 regularization deterministically encourages sparsity in feature
activations and remains active during inference.

5.3 DIFFICULTIES

• A single greatest difficulty in constructing the CNNs, specifically for VDSR and DSFSR,
was ensuring proper dimensionality changes between input to output and to testing later
on. A lot of debugging had to be done to make sure the images were in the proper tensor
format to input to the network and then brought back to the correct format for testing. Pre-
processing and post-processing took more time than the actual network for some of the
CNNs!

• GPU access in Google Colab was limited due to only a set amount of compute units avail-
able. So at times we had to use the CPU, which was more time-intensive.

• Formatting images for submission became difficult due to Overleaf formatting constraints.
One suggestion that we tried was putting all our results on a single row (Ground Truth,
Low-Res image, model 1, model 2, ...). We attempted to reformat 1 and 3, however, placing
more than 6 images in a row led to the images either being too small or too blurry to actually
make out the super-resolved effect.

• Due to the continuous changes our project went through,it was difficult to expand too deep
into a single model or focus. We had more trouble finding a consistent narrative for our
project since the notion of sparsity in SR tasks is already developed in recent literature. We
settled on the DSFSR model since we had not found any existing ablation study or sufficient
research on where exactly sparsity penalty had the best effect (in regards to feature maps).
This idea was also influenced by the TA and Professor feedback, which greatly helped this
project fit into a consistent narrative.

WORK DONE AND LESSONS LEARNED BY EACH MEMBER

Hershen Nair: Analyzed Sparse Representation model. Write-ups for Abstract, Sections 1, 2, 3.1,
3.8, 5.1, 5.3, Updates to Sections 3.3 and 3.4. This project helped me deepen my understanding of
how Sparse Representation works along with dictionary training to construct high-resolution images
from low-resolution ones. I also learned a great deal about the importance ablation studies, espe-
cially how varying carefully chosen ablations can give meaningful insights on a model’s behavior
under different conditions.
Srijan Pal: Score metrics implementation and ablation study of DSFSR model. Write-ups for Sec-
tions 3.3, 3.5, 4, 5.2. This project helped me improve my understanding of ablation studies, result
analysis, and how they are used together to understand model behavior and performance.
Vasisht Natamai: Developing and implementing DSFSR model. Write-ups for sections 3.2, 3.3,
3.4, 3.5, 3.6, 5.2. This project really helped me learn the impact of sparsity on deep neural networks.
It also helped me understand how to conduct robust ablation studies to help determine a correlation
between variables.
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6 APPENDIX

(a) SRCNN with 5500 epochs (b) SRCNN with 50 epochs

(c) SRCNN with Residual Connection (d) SRCNN with L1 penalty

(e) SRCNN with Residual and L1 Penalty (f) VDRS

Figure 1: Test Images by Baseline Model
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(a) SRCNN with 5500 epochs (b) SRCNN with 50 epochs

(c) SRCNN with Residual Connection (d) SRCNN with L1 penalty

(e) SRCNN with Residual and L1 Penalty (f) VDRS

Figure 2: Violin Plots by Baseline Model
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(a) DSFSR (5th Layer L1 Penalty) (b) DSFSR (10th Layer L1 Penalty)

(c) DSFSR (18th Layer L1 Penalty) (d) DSFSR (5th and 10th Layer L1 Penalty)

(e) DSFSR (10th and 18th Layer L1 Penalty) (f) DSFSR (5th, 10th, and 18th Layer L1 Penalty)

Figure 3: Test Images by DSFSR Model
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(a) DSFSR (5th Layer L1 Penalty) (b) DSFSR (10th Layer L1 Penalty)

(c) DSFSR (18th Layer L1 Penalty) (d) DSFSR (5th and 10th Layer L1 Penalty)

(e) DSFSR (10th and 18th Layer L1 Penalty) (f) DSFSR (5th, 10th and 18th Layer L1 Penalty)

Figure 4: Violin Plots by DSFSR Model
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Model Mean PSNR
(dB)

Mean SSIM Mean
BRISQUE

Mean LPIPS FID (HR set
vs SR set)

SRCNN
5500 Epochs

34.065 0.9128 37.82 0.1556 62.236

SRCNN 50
Epochs

31.101 0.7592 55.19 0.3437 129.732

SRCNN +
Residual

34.866 0.9311 37.33 0.1217 51.166

SRCNN +
Sparsity

33.331 0.8883 40.72 0.1964 75.431

SRCNN +
Residual +
Sparsity

34.476 0.9239 37.06 0.1396 57.432

VDSR 34.995 0.9318 38.35 0.1159 78.279
DSFSR (5th
Layer)

35.007 0.9324 36.22 0.1150 77.821

DSFSR (10th
Layer)

35.167 0.9343 38.25 0.1106 77.455

DSFSR (18th
Layer)

35.119 0.9333 38.90 0.1111 76.479

DSFSR (5th
and 10th
Layer)

35.132 0.9339 37.54 0.1117 77.124

DSFSR
(10th and
18th Layer)

35.091 0.9333 36.70 0.1140 78.112

DSFSR (5th,
10th, and
18th Layer)

35.067 0.9345 36.56 0.1141 79.467

Table 1: Evaluation Metrics Table

λ at DSFSR
10th Layer

Mean PSNR
(dB)

Mean SSIM Mean
BRISQUE

Mean LPIPS FID (HR set
vs SR set)

3e-3 35.208 0.9374 37.63 0.1103 77.024
1e-3 35.196 0.9351 37.55 0.1112 45.214
5e-4 35.029 0.9327 36.10 0.1135 77.577
3-e4 35.076 0.9339 36.43 0.1135 77.897
1e-4 35.167 0.9343 38.25 0.1106 77.455

Table 2: Evaluation Metrics Table

14


	Introduction
	Related Works (Updated from proposal)
	Super-Resolution Convolutional Neural Network (SRCNN)
	Sparsity
	Very Deep Super Resolution (VDSR)
	End-To-End Super Resolution (SRDD)
	Sparsity Driven Compressed Implicit Neural Representations (SINR)

	Methodology (updated)
	Replication of Current Methods
	Very Deep Super Resolution (VDSR)
	DSFSR: Deep Sparse Feature Super-Resolution (Completed Work)
	Future Work
	EDLSR
	SR-INR

	Score Metrics
	Google CoLab

	Current Results
	Test Images
	Violin Plots

	Discussion and Conclusion
	Ablation Study Recap
	DSFSR Ablation Study Results
	Difficulties

	Appendix

