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ABSTRACT

The study presents an advanced multi-view drone swarm imaging system for three-dimensional
characterization of smoke plumes during controlled burns. The system integrates a manager drone and
four worker drones equipped with high-resolution cameras and precise GPS modules. These drones
operate autonomously in synchronized circular flight paths to capture multi-angle images, which
are processed using Neural Radiance Fields (NeRF) to generate high-resolution 3D reconstructions
of the plume’s temporal evolution. Field tests validated the system’s ability to extract key plume
characteristics, such as volume dynamics, directional shifts influenced by wind, and the interplay
between smoke generation and lofting, with second-level temporal resolution. This innovative system
offers high resolution data for refining predictive models of smoke dispersion and optimizing
prescribed burn practices. Furthermore, its versatile design enables broader applications, including
monitoring industrial emissions, tracking volcanic ash plumes, and studying atmospheric transport

phenomena, making it a powerful tool for environmental and climate research.

1. Introduction

Understanding the transport dynamics of atmospheric
particles, such as dust, snow, smoke, and sand, is essential
due to its significant impact on air quality, climate, and
ecological systems across various environmental processes,
including wildfires, sandstorms, snowstorms, and volcanic
eruptions (Kumar et al., 2011; Kok et al., 2012; Evangeliou
et al., 2020; Mott et al., 2010; Jaffe et al., 2020; Butwin
et al., 2019; Dentoni et al., 2022). This is important for
prescribed burns, which are controlled fires used in forest
management to enhance ecological health and reduce the
risk of wildfires. However, the occurrence of 43 wildfires
out of 50,000 prescribed burns in the U.S. between 2012
and 2021 underscores the need for effective smoke manage-
ment to ensure public safety and minimize adverse effects
on air quality (Associated Press, 2024). The challenges in
managing these burns highlight a critical gap in our under-
standing of the dispersion dynamics of particles during these
events, which can lead to severe and potentially devastating
outcomes (Kalabokidis, 2000; Pereira et al., 2021). There-
fore, there is a pressing need for comprehensive research to
better predict, manage, and mitigate the risks associated with
prescribed burns.

To address these challenges, researchers are developing
various simulation tools, such as QUIC-Fire and
FIRETEC (Linn et al., 2020, 2002), that aim to model
fire and smoke particle behavior. These tools utilize
complex inputs, including 3D maps of fuel sources,
vegetation structure, topography, moisture content, and
wind predictions (Robinson et al., 2023; Mell et al.,
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2021; Rowell et al., 2020). Despite these advancements,
significant limitations remain. There is a lack of validation
that compares the predicted movement of particles with
actual plume dispersion, a shortage of dynamic 3D
ground truth data on particle dispersion, and difficulties
in making accurate predictions in areas where 3D fuel data
is unavailable (Linn et al., 2020; Brambilla, 2023). These
limitations underscore the ongoing need for field data to
validate and improve these models, ensuring more accurate
predictions and better management.

However, current field tools for data collection have sig-
nificant limitations. Remote sensing and Lidar technologies,
while valuable, lack the spatial and temporal resolution re-
quired to capture the highly dynamic flows of smoke plumes
during prescribed burns (Sokolik et al., 2019; Prichard et al.,
2019). Moreover, these tools are constrained by their limited
mobility, making it difficult to effectively monitor events
across varied terrains or in remote and inaccessible areas.
The inability to collect such detailed data hinders the devel-
opment of more accurate and reliable models for managing
prescribed burns and predicting smoke dispersion.

To address these challenges, this study aims to develop
an autonomous drone swarm equipped with cameras to
capture multi-angle images of smoke plumes. This approach
will enable the 3D reconstruction of plume dispersal dy-
namics, allowing for detailed analysis of flow patterns. By
deploying a fleet of drones for multi-view imaging, we intend
to create a comprehensive 3D ground truth model of spe-
cific burn events. This model will provide researchers with
critical data for validating simulation predictions and offer
essential guidance for hazard response and management.

While there has been no prior work on 3D reconstruction
of particle transport using multi-view images from drones,
significant advancements have been made in 3D reconstruc-
tion techniques with static objects (Schenk, 2005; Goesele
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et al., 2006; Hackl et al., 2018; Schonberger and Frahm,
2016; Mildenhall et al., 2021; Miiller et al., 2022). Prominent
methods include Structure from Motion (SfM) and Multi-
view Stereo (MVS), which reconstructs 3D models from 2D
image sequences through feature tracking and photogram-
metry, allowing for precise estimation of camera poses and
3D structures (Goesele et al., 2006; Schonberger and Frahm,
2016). Neural Radiance Fields (NeRF) have further pushed
the boundaries of scene reconstruction by generating pho-
torealistic views through the optimization of a continuous
5D neural radiance field from sparse input images (Milden-
hall et al., 2021; Miiller et al., 2022). Building on these
advancements, D-NeRF extends this capability to dynamic
scenes, capturing non-rigid motion and deformation over
time (Pumarola et al., 2021). Additionally, RoDynRF en-
ables dynamic view synthesis from monocular videos, even
without known camera poses (Liu et al., 2023). However, re-
constructing atmospheric dispersion plumes presents unique
challenges. SfM struggles with the featureless nature of
plumes (Schonberger and Frahm, 2016), NeRF is primarily
designed for static scenes (Mildenhall et al., 2021; Miiller
et al., 2022), D-NeRF may not perform well with unfamil-
iar or highly variable scenes (Pumarola et al., 2021), and
RoDynRF faces difficulties with the complex dynamics of
plumes and demands extensive training times (Liu et al.,
2023). These limitations can be effectively addressed us-
ing our multi-view drone swarm approach. By deploying
multiple drones, we can adaptively capture images of the
plume at various scales and positions, tailored to the plume’s
size and dynamic evolution. With this adaptive imaging
strategy, we can fully harness the efficiency (compared to D-
NeRF) and accuracy of the NeRF pipeline, generating highly
detailed 3D reconstructions for each temporal snapshot. This
approach allows us to capture multiple reconstructions over
time, facilitating the study of the plume’s dispersion change.

The structure of this paper is as follows: Section II details
the proposed drone swarm platform for 3D plume charac-
terization, including both the drone hardware and 3D re-
construction method. Section III demonstrates the efficiency
of our system through field deployment of our multi-view
drone swarm and the follow-up 3D plume reconstruction and
plume characterization. Finally, we summarize our findings
and discuss their implications and limitations.

2. Methodology

2.1. Overview

As illustrated in Figure 1 , our drone swarm system for
multi-view imaging comprises two main components: the
data acquisition module and the data processing module.
The data acquisition module includes a manager drone and
four worker drones, which work in a coordinated manner to
capture multi-view images of the smoke plume and its evolu-
tion over time. These drones are equipped with synchronized
imaging systems that allow them to document the plume at
different time steps from various angles.

Figure 1: lllustration of the drone swarm system that uses
multi-view imaging for 3D smoke plume characterization.

In the data processing module, the captured images
from the worker drones are compiled and segregated by
segmented time intervals. The images are then fed into the
Neural Radiance Fields (NeRF) network, and the output
point cloud from this is further processed to remove the
background and segment the plume in 3D. This 3D model is
used to extract important characteristics of the plume, such
as its volume, angle of deviation, and other dynamics of
plume dispersion in the atmosphere. The process is repeated
for each time segment to provide a comprehensive spatial
and temporal characterization of the plume dynamics.

2.2. Data Acquisition Module

NVIDIA Jetsi)n Orin Nano

¥
Camera mounted
on 3-axis gimbal

Figure 2: Drone hardware configuration showing the quad-
copter with camera mounted on a 3-axis gimbal and GPS with
RTK (left), and the NVIDIA Jetson Orin Nano (right).

The drone swarm system consists of a manager drone and
four worker drones, built on durable Holybro S500 V2 quad-
copter frames. Each drone is equipped with a 12 Megapixel
(MP) ArduCam USB-based camera mounted on a 3-axis
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Figure 3: Flowcharts detailing the steps involved in (a) stabilizing the manager drone, (b) collecting data with the worker drone
swarm, and (c) processing captured data for 3D plume reconstruction and characterization.

gimbal for smoke detection, image feedback control, and
dataset collection to facilitate 3D reconstruction, as shown
in Figure 2. The drones are powered by 6000 mAh lithium-
polymer batteries and controlled using Holybro Pixhawk
6C flight controllers running ArduPilot. Commands can be
transmitted through a 2.4 GHz FrSky RC controller, a 915
MHz telemetry radio via MAVLink, or directly over USB
using the NVIDIA Jetson platform. These components are
similar to those used in (Bristow et al., 2023).

The manager drone is equipped with an NVIDIA Jetson
Orin Nano, while the worker drones use the NVIDIA Jetson
Nano. The manager drone has a more powerful computer to
handle the higher computational demands of object detec-
tion (smoke) and to manage additional navigation controls
for both itself and the worker drones. Both types of drones
operate with an onboard computer running MAVROS; the
manager drone runs ROS Noetic, while the worker drones
operate on ROS Melodic. This setup allows the ROS node
to access the flight controller’s sensor information as topics
and facilitates setting parameters for autonomous actions.
It supports inter-sensor communication within the drone
and drone-to-drone communication for autonomous swarm
operations.

To enable coordinated data collection, the drones are
interconnected via a robust outdoor Wi-Fi network with a
speed of approximately 1775 Mbps, providing stable wire-
less coverage up to 200-300 m at the 5 GHz band. Addition-
ally, for high-precision positioning, we employ Real-Time

Kinematic (RTK) technology, which provides centimeter-
level accuracy by utilizing carrier phase measurements from
GNSS signals, achieved through triangulation between the
RTK base station, GPS, and satellites. The drones operate
based on a swarm control algorithm, depicted in Figure 3,
maintaining optimal spacing and coverage around the plume
to capture images from multiple perspectives.

1) Capturing and Undistorting Images: To ensure accu-
rate 3D reconstruction and image feedback control, camera
calibration is performed to determine the camera matrix
and distortion coefficients, which are then used to undistort
images. In this setup, the manager drone captures images at a
resolution of 640 x 480 pixels and processes (segmentation)
at a rate of ten fps for realtime feedback, while worker
drones use a resolution of 1280 x 720 pixels for better image
reconstruction. The full-sensor size of the camera is not used
due to its low frame rate and the excessive computational
load it would impose on the Jetson Nano.

2) Detecting Smoke: The plume detection is conducted
using a YOLO-v8(You Only Look Once) (Jocher et al.,
2023) segmentation model. This model is trained with top-
down views of smoke plumes to accurately detect and seg-
ment the plume region.

3) Centering Manager Drone: The drone tracks and
centers on the plume’s centroid obtained from plume seg-
mentation in the previous step by adjusting its position until
the centroid is within a specified threshold of the image cen-
ter. It accomplishes this by publishing velocity commands
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(cmd_vel) with twist values for the x and y axes to the
drone via MAVROS. These commands move the drone in
the direction of the centroid. The process continues until the
centroid is aligned with the image center, ensuring accurate
tracking.

4) Adjusting Altitude of Manager Drone: The drone
adjusts its altitude based on the segmented smoke area,
ensuring optimal positioning for effective tracking. If the
smoke area exceeds an upper threshold, the drone ascends;
conversely, if the smoke area falls below a lower threshold,
the drone descends. This process continues until the drone
reaches the optimal range, where the smoke area comprises
8% to 12% of the image. This threshold is chosen to ensure
that most of the smoke is captured within the frame, while
still including a portion of the background. Maintaining this
balance helps in accurately positioning the drone for swarm
operations, allowing the drones to surround the smoke plume
effectively and coordinate the mission.

5) Aligning Yaw of Manager Drone: To align the drone
perpendicularly to the flow of the dispersion plume, the
covariance of the segmented mask is calculated, resulting in
eigenvectors that indicate the plume’s flow direction relative
to the image. The drone is then yawed perpendicular to the
largest eigenvector. Using the drone’s current heading, yaw
adjustment is calculated and executed to achieve desired
orientation.

6) Stabilizing Manager Drone: The three processes are
re-initiated repeatedly until all parameters fall within their
thresholds. Once these conditions are met, the drone sta-
bilizes and maintains its position, ensuring it is correctly
aligned and in the optimal location.

7) Computing Worker Drone Locations: Using the
drone’s GPS coordinates, altitude, and camera focal length,
we calculate the real-world dimensions of the captured
image. By applying the haversine formula, we calculate the
latitude and longitude of the image’s corners, based on the
known latitude and longitude of the image center. Using this
information, we compute an affine transformation matrix
with the least error, that maps each pixel to its corresponding
GPS coordinates.

8) Positioning Worker Drones: To precisely localize and
position the drones around the plume from four sides, the
target locations for each drone are calculated based on data
from the manager drone. The manager drone captures a 640
x 480-pixel image, and the two vertical extreme points of
this image are identified to maximize coverage of the smoke
plume while collecting data. The distance from the center to
these vertical extremes is used to determine corresponding
horizontal positions, ensuring that all worker drones are
equidistant from the center. The positions will adjust with
each run based on the size of the plume, as the altitude
of the manager drone changes accordingly to accommodate
plume size variations. Once these positions are computed,
the drones are dispersed to their designated locations at
the desired altitude, yawing to face the manager drone for
optimal data collection.

9) Collecting Data for 3D Reconstruction: Worker
drones hold their positions until each reaches its designated
location as assigned by the manager drone. Once in
position, a uniform radius is established for all drones,
determined by the distance between the manager drone and
the worker drones. This ensures all drones are equidistant
from the manager and collectively encompass the targeted
plume, achieving optimal spatial resolution for 3D plume
reconstruction. Upon receiving a command from the
manager drone, all drones simultaneously switch to circling
mode, maintaining the specified radius while orbiting and
capturing plume images. This synchronized movement
ensures precise data collection and consistent image quality
across the swarm

2.3. Data Processing Module

The data processing module consists of several stages de-
signed to efficiently handle the data captured by the drones,
as depicted in the flow chart in Figure 3c.

1) Preprocessing Data: Each drone captures data corre-
sponding to one-quarter of a circular region. When com-
bined, data from all four drones form a complete circle
around the plume, representing a single time segment. As
the drones continue capturing data, additional circles are
generated, each corresponding to a new time segment. To
enhance temporal resolution, data overlaps are introduced
between two consecutive time segments, effectively creating
additional intermediate time segments

2) Estimating Camera Poses: Distinctive images cap-
tured by each drone are labeled and the aggregation of this
is fed into COLMAP, which employs SIFT feature extrac-
tion, exhaustive feature matching, structure-from-motion,
and bundle adjustment. This process estimates camera poses
for all drones relative to one another, ensuring that indepen-
dent reconstructions are aligned within a unified coordinate
system.

3) Reconstructing 3D Plumes with NeRF: For each time
segment, the required camera poses are extracted from the
total poses computed by COLMAP. Using the COLMAP
camera trajectory and corresponding image data, a NeRF
(Neural Radiance Fields) model is trained. During this pro-
cess, 2D image data is projected into radiance fields, which
converge to form a 3D representation. The resulting 3D data
outside the defined enclosure region is cropped, and the
refined data is exported as point clouds.

4) Post-Processing Data: Background removal is per-
formed using a combination of YOLO-v8 and a Naive Bayes
Gaussian model. YOLO-v8 is used to detect and segment
smoke plumes in three randomly selected images from the
input data. These segmented masks, along with the back-
ground RGB data, are then used to train a Naive Bayes
Gaussian classifier. The classifier is employed to segment the
smoke plumes from the point clouds, effectively removing
the background.

5) Characterizing Plume Dynamics: In the final step, the
processed 3D model is analyzed to extract crucial plume
characteristics, such as spatial extent and expansion angle.
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These features are essential for understanding plume dynam-
ics and supporting the development of predictive models for
behavior in various atmospheric conditions.

3. System Demonstration
3.1. Field Deployment

Figure 4: Field deployment setup for data collection, featuring
a manager drone positioned above the plume for centralized
control and four worker drones encircling the plume to capture
multi-angle images for 3D reconstruction.

The field testing was conducted on an agricultural field,
as shown in Figure 4. For the testing, smoke plumes were
generated using a high-density smoke generator that uti-
lizes a non-harmful smoke fluid composed of high-density
fog liquid, food-grade glycerine, and propylene glycol. The
generated smoke typically extended up to 40 m in length,
with variability depending on the smoke machine’s emission
intensity. To enhance production, two smoke machines were
used: one produced a high volume of smoke that dimin-
ished and regenerated cyclically, while the other operated
intermittently to optimize overall density. Together, these
machines created plumes with widths ranging from one to
ten meters and a maximum height of ten meters.

Once the smoke generator and Wi-Fi network were set
up, the drones were powered on and connected to the net-
work. We initiate MAVROS nodes in each drone via Secure
Socket Shell (SSH), with the manager drone serving as the
ROS Master. From the base station, commands were exe-
cuted to begin operations. The manager drone was launched
manually first to process images and relay data to the base
station. Upon detecting smoke, the drone was switched to
GUIDED mode to autonomously position itself above the
plume. Following this, worker drones were launched and set
to GUIDED mode to autonomously adjust their positions
and optimize coverage based on plume size.

In the experiment, the drones followed circular paths
with an average radius of 21 m around the plume. Each drone
completed a full circle in approximately 32 s, recording data
at eight fps. Equipped with 6000 mAh, 4S batteries, each
drone could perform up to five complete circles before ex-
periencing performance degradation, such as altitude drops

due to reduced thrust voltage. At this proof-of-concept stage,
the system provided two minutes and 20 s of stable flight
time, allowing for five full data collection circuits. All data
were recorded onboard for post-flight analysis.

3.2. 3D Plume Reconstruction

In this study, we applied Neural Radiance Fields (NeRF)
to reconstruct the 3D dynamics of a smoke plume over
two minutes and 20 s recording interval, during which
each drone completed five revolutions around the plume.
The reconstruction was based on images captured by four
drones, each circling the plume at quarter-circle intervals.
Each drone required eight seconds to complete a quarter-
circle, and because all drones operated synchronously, the
combined data provided a full-circle dataset every eight
seconds. During each quarter-circle, a drone captured 65
images, resulting in a total of 260 images per full revolution.
These images were then processed to reconstruct the plume
in 20 distinct time segments, with each segment covering
approximately eight seconds of plume dynamics.

To enhance temporal resolution and capture smoother
plume dynamics, we introduced overlaps of 25%, 50%, and
75% between time segments, generating three additional
reconstructions between each pair of segments. This ap-
proach resulted in a total of 77 reconstructed time segments,
providing a finer temporal resolution of 1.75 s. This adjust-
ment enabled a more detailed and continuous observation of
plume behavior over time.

The 3D reconstruction was performed using a high-
performance computing system equipped with a 13th Gen
Intel Core i7-13700K CPU, 64 GB of RAM, and an NVIDIA
RTX 5000 Ada GPU with 32 GB of memory. The computa-
tional time for each 8-second segment was approximately 10
minutes. The process for reconstructing and saving filtered
point clouds from segregated data has been fully automated,
ensuring efficiency and consistency in data handling.

As shown in Figure 5, the reconstructed models capture
significant changes in plume dynamics over the recording
period. Snapshots reveal the plume’s variations in volume,
direction, and shape. Early in the sampling period, the plume
exhibits an average volume and elevation, while later stages
show greater dispersion, distinct directional deviations, and
reduced density. Key stages include initial growth and as-
cent, lateral dispersion under wind influence, and eventual
dissipation with diminished volume and height. The recon-
structed models reveal critical changes in the plume’s evolu-
tion over time, showcasing its growth, directional shifts, and
eventual dissipation. These dynamic reconstructions lay the
groundwork for quantitative analysis of plume characteris-
tics, discussed in the following section.

3.3. Quantitative Characterization of Plume
Dynamics
This section highlights the capability of our drone
swarm-based 3D reconstruction system to quantitatively
analyze essential plume parameters for controlled burns.
From the reconstructed 3D models, we extracted critical
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Figure 5: Snapshots of the 3D reconstructed plume showing variations in volume, direction, and shape over the 140 s sampling
period. Major dotted lines indicate reference lines for the angle of deviation, with the green-highlighted angle between the major
dotted line and the white solid line representing the angle of deviation. Minor dotted lines serve as reference lines for average
height, while the vertical red line highlights the average height.
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Figure 6: Quantitative analysis of reconstructed plume dynam-
ics: (a) Volume trends over time, showing cyclic behavior,
(b) Side view (x-z plane) illustrating variations in average
plume height, and (c) Top view (x-y plane) depicting angle
of deviation and directional changes.

metrics: total plume volume V,, angle of deviation (AOD)

Af,, and average plume height ﬁs. Researchers modeling
plumes have shown significant interest in studying changes
in elevation and volume to better understand plume
lifecycles (Raznjevic, 2023; Cao et al., 2021). AOD has
been particularly critical in the development of tools like
QUIC-Fire, as it captures the influence of wind on particle
transport and fire behavior (Robinson et al., 2023). Guided
by these findings, we incorporated the extraction of these
parameters into our 3D reconstruction models to enhance the
analysis of smoke dynamics. These metrics provide valuable
insights into plume behavior, including growth, transport
direction, and lofting, which are crucial for applications such
as prescribed burn management and forest fire research.

To calculate these critical parameters of plume dynam-
ics, specific methodologies were applied to the reconstructed
3D data, as illustrated in Figure 6. The V, was estimated
using the Convex Hull approach, which encloses the plume’s
data points within the smallest convex shape, providing a
practical, though approximate, measure of its spatial bound-
aries. This method allowed us to plot the plume’s volume
changes over time. The Ad,, reflecting the influence of wind
on plume direction, was determined by projecting the plume
onto a horizontal plane and calculating the average x and
y coordinates. A vector connecting these coordinates to the
plume’s origin was used to compute the angle between this

vector and a reference line parallel to the x-axis, representing
the plume’s average direction. Lastly, the ﬁs of the plume
was analyzed by calculating the mean elevation of all points
in the cloud and plotting it against time.

To ensure these computed parameters were scaled to
real-world dimensions, we utilized the known diameter
of the drone trajectories. The NeRF model reconstructs
data based on trajectory and pose estimations derived from
COLMAP, which adheres to a unified coordinate system. By
applying the known real-world diameter of the drone paths
as a scaling factor, the reconstructed data could be converted
into real-world measurement units, enabling physical inter-
pretation of the plume volume, AOD, and height.

Based on the calculation methods described above, each
parameter (V, Af,, H,) was computed, and the results are
presented in Figure 7. The trends are analyzed as follows:

1) Volume Change Analysis: As shown in Figure 7a, the
plume’s volume exhibits a cyclic pattern over time, with dis-
tinct peaks and troughs corresponding to periods of smoke
generation and diminishment. These fluctuations align with
the operation of the smoke machines, where active emissions
produce large, dense plumes, and intervals of reduced output
result in smaller, more dispersed plumes. This cyclic behav-
ior reflects the temporal dynamics of the plume, driven by
the smoke machine’s operational cycles. Validation using
drone-captured images confirms this pattern, showcasing
high-volume plumes during active phases and diminished
plumes during quieter intervals. The alignment between
these visual observations and the plotted data supports the
accuracy of the extracted volume measurements.

2) AOD Analysis: The angle of deviation, as shown in
Figure 7b, captures directional shifts in the plume’s trajec-
tory under the influence of wind. During steady wind condi-
tions, deviations are minimal, with a typical range of +10°.
However, when the second smoke machine activates, the
plume intensity increases, resulting in higher velocity and
longer travel distances. In these cases, the wind’s influence
becomes more pronounced, causing distinct peaks in the
AQD plot. Visual validation highlights this behavior, with
the plume initially remaining straight due to the machine’s
propulsion, then displaying a turning effect as dispersion in-
creases. The visuals also include a reference line that clearly
illustrates deviations from the plume’s average direction,

Nikil Krishnakumar et al. : Preprint submitted to Elsevier

Page 6 of 9



3D Characterization of Smoke Plume Dispersion Using Multi-View Drone Swarm

(a) 1400
1200
Vs (m3) 500

400

(b) 8

Abs(°) o

(©

54
50
Hg (m) 46

42

38

1(s)

Figure 7: Temporal trends in plume characteristics derived from 3D reconstructions, showing the variation in (a) volume (V,),

(b) angle of deviation (A8,), and (c) average height (H,), validated with visual data from individual drone recordings.

emphasizing the transition from machine-driven to wind-
driven behavior.

3) Average Height Analysis: The trends in average
height, depicted in Figure 7c, closely follow the volume
pattern in Figure 7a for most of the recording period.
During active smoke generation, the plume achieves higher
elevations, especially when wind direction aligns with
the plume’s flow. Conversely, reduced emissions result in
lower plume heights, with the smoke dispersing rapidly
at the far end due to wind effects. Notable exceptions
occur when ES remains relatively high despite low V,
which is attributed to narrower plume widths maintaining
lofting while reducing overall volume. Validation with
drone-captured visuals further supports these observations,
illustrating the interplay between smoke generation, vertical
expansion, and wind-driven dissipation.

Overall, the deployment of the swarm-based 3D re-
construction system effectively captured and characterized
the dynamic nature of smoke plumes, highlighting critical
behaviors such as cyclic volume variations, wind-driven di-
rectional changes, and the intricate interplay between smoke
generation and lofting.

3.4. Conclusion and Discussion

This study presented a novel drone swarm system for
3D reconstruction of dynamic smoke plumes, combining
multi-view imaging with Neural Radiance Fields (NeRF) to

achieve high-resolution temporal and spatial plume charac-
terization. The system comprises one manager drone and
four worker drones working in a coordinated fashion, with
each drone equipped with high-resolution cameras, RTK-
enabled GPS for precise positioning, and onboard processing
units. Field deployment demonstrated the system’s effec-
tiveness in capturing dynamic plume characteristics such as
cyclic volume variations, wind-driven directional shifts, and
the interplay between smoke generation and lofting. The
system reconstructed 77 time segments over a two minute
and 20 s interval with a temporal resolution of 1.75 s,
yielding detailed quantitative data on plume volume, angle
of deviation, and average height. These results validate its
precision in analyzing highly dynamic and complex plume
dispersal patterns.

The findings underscore the system’s transformative po-
tential for prescribed burn control and forest fire research.
By providing accurate, dynamic 3D reconstructions, this
technology bridges critical gaps in field data required for val-
idating predictive models such as QUIC-Fire and FIRETEC.
These capabilities underscore the system’s potential to pro-
vide precise quantitative insights essential for advancing
prescribed burn control strategies and enhancing forest fire
research. By enabling detailed visualization and analysis
of plume dynamics, this tool demonstrates its capacity to
support data-driven decision-making for effective smoke
and fire management. Beyond prescribed burns, the system’s
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versatility extends to other environmental monitoring appli-
cations, such as tracking industrial emissions, volcanic ash
plumes, and atmospheric particle transport (Butwin et al.,
2019; Cao et al., 2021). These advancements have profound
implications for improving environmental resilience, disas-
ter response, and air quality management.

Despite its promising capabilities, the current system
has limitations. The reliance on fixed circular flight paths
restricts adaptability to irregular plume geometries, necessi-
tating waypoint-based or adaptive navigation strategies for
more complex scenarios (Tankasala et al., 2022). Using
drone sensors to estimate camera poses directly, instead of
relying on COLMAP, can significantly reduce computation
time. Computational demands for NeRF-based reconstruc-
tion pose challenges for real-time applications, requiring op-
timization through advanced techniques like Dynamic NeRF
or instant NGP (Miiller et al., 2022; Pumarola et al., 2021).
Additionally, the system’s current focus on visual data could
benefit from the integration of thermal imaging and chemi-
cal sensors to capture plume temperature and composition,
further expanding its utility (Asadzadeh et al., 2022; Burgués
and Marco, 2020). Future work will address these challenges
by enhancing drone autonomy, improving computational
efficiency, and incorporating multi-modal sensing to create
a more robust and versatile plume characterization platform.
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